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CHAPTER — IV.

. ZFFECT OF LONGITUDINAL INERTIA AND OF SHEAR DEFORMATION ON THE

TORSIONAL FREQUENCIES AND NORMAL MODES OF SHORT WIDE-FLANGED
THIN-WALLED DUAMS OF OPEN SHOTIONT

4.1, INTRODUCTION:

In the analytical studies presented in Chapters Il and
IIT, the problems are formulated utilizing the Timoghenko tor-
sion theory (98) and, the effects of longitudinal inertial and
shear deformation are neglected assuming the beam to be lengthy
compared to the crogs sectional dimensions. But the corrections
due to longitudinal inertia and shear deformétion may be of im-
portance if the effects of cross sectional dimensions on the

frequencies of torsional vibration are desired.

Timoshehko torsion theory, though intended to be an im-
provement over the classical Saint-Venant torgion theory, suffers
from the defect that while dlspersive in character, very short
wavelengths are propagated with infinite velocities. Thus, this
improved theory is limited in its description of high-frequency

- (short-wavelength) vibrations and, because it containg no delay

tine (infinite velocities), it is not suited for problems invol- -
ving the response to sharp translents. So much:sﬂ, Timoghenko
torsion theory cannot be justified for short wide-flanged beams

% Regults from this Chapter were published by the author, K.V.Aﬁpa—
rao and P.K.Sarma in May, 1974 isgue of the Journal of the Aero-
nautical Society of India, see Ref.(4q ).
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and higher modes of wvibratlon,

L4 70,104
Though there exists gome studies (1;3?3) on free torsional

vibrations of beams of open section including second order ef-
fects such ag longitudinal inertia, shear deformation and ghear
lag, solutions were given only for the simple case of a simply
supported beam. Stating that the frequenoy equations for other
boundary conditions are highly transcendental in nature, theilr
golutions were not attempted. The effects of longitudinal iner-
tia and shear deformation on torsional frequencies for various
boundary conditions of short wide~flanged thin-walled beams of
open gsection were not yet ful%janalyzed. Further, it is observed
that the torsional frequency values for Indian standard wide-
flanged I-beams are not mede availablérlegﬁg literature tii:
e :

The present chapter therefore deals with exact énd app-
roximate analytical solutions of torslonal vibrations of short
wide-flanged thin-walled beams of open gsection, for which the
shear center and centroid coincide, ineluding the effects of lon-
gitudinal inertia and shear deformation. The governing equations

of motion are desired uging Hamilton's principle. The method of

- solution used by Huang (49 ) in the analysis of Timoshenko beam

equations in flexural vibrations, i; applied to the coupled
equations of motion to derive a clear and neat set of frequency
and normal mode equations for gix common types of simple and
finite beamg. Solutions are obtained for two complete differen-

tial equations in angle of twist and warping angle respectively.
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The constants in theme solutiona are related by any one
of the original ooupled equations from which the two complete
eqﬁations are derived. The advantage of thig method is that
the boundary conditions prescribed are homogeneous and the ana-
lysis becomes quite simple. The expressions for‘orthoganality
and normalizing conditions for the principal normal modes, which
aie useful in solving forced vibration problems and, which in-
clude both the angle of twist and warping angle are also obtained
in thig Chapter for both the general case and for beamg with va-
rious simple end conditions.

by ' s
wa" ahe
To faoilitateqthe designers, extensive design data is pre-

sented for the torsional frequencies of Wide-flanged doubly sym-
metric I-beams with various types of end conditdons. The results
for the first four modes of vibration for various types of end

conditions are presented in tabular form suitable for design use.

To supplement the exact solutions, with approximate analy-
tical solutions, the problem is also solved for some typical
‘boundary conditions utilizing the Galerkin's technique. Depen-
ding upon the assumed functions satisfying the prescribed boun-
dary conditiong of the beam, Galerkin's technique i1s found to

give nearly accurate results.
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4.2, BASIC ASSUMPTIONS :

The problems investigated in thig Chapter are restricted
to the following assumptions:

a) The material of the beam is homogeneous, isotropie and

obeys Hooke's law.

s

b) By symmetry, the cross sections rotate with respect .
to ocentroidal axis, the warping is confined to flanges only.

o) Plane croms sectionn of Alffarent atrnlght ploces re-
main plane, and warping accross the thickness of these cross sec-

tions is neglected.

d) The distortion of the wab out of its plane is assumed
negligible.

e) Bending of the flanges does not produce any additional

shear gtresses on the flange-web section.
£) No internal and external damping forces exist.

g) The deformations are small compared with the cross-

sectional dimensgions of the beam in the linearized problem.

’

4,3, DERIVATION OF DIFFERENTIAL BQUATIONS OF MOTION:

Figg.4.1 and 4.2 show a differential element of length
‘dz of a wide-flanged I-beam undergning torsion. The strain energy
U1 at any ingtant t in a beam of length L due to Saint-Venant
torsion is (See Eq. 2.2a)

; Sri
Y= 5

o —H

GCS(%%)Edz (a.a )
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Acoompanying the rotation 1s A warping of the orogs= : 'Rﬁg
gection which is assumed constant in each piece of the cross-
gsection having a moment M. Thus for the wide-flanged section,
warping is confined to flanges alone and its angle of rotation
denoted by W (z,t); see Figs.4.1 and 4.2.

7 Fig.4.2 (b) shows an element of the top flange. If w is
the z-displacenent of a point in the top flange, then , 1

w=(x, 2, t) =-x®p (4.2)

and the z-component of strain is given by

ot
¢ = -a-z-_-xﬁ ‘ (4.3)
The section is thin, so we assunme c'x= o = 0, and Hooke's law
gives o~ = EE , where E is Young's modulus. Moment M due to
gtresses G“Z.is
u = 1, 2¥ (4.4)
0z

It is easlly verified that stressee'c“t_give rige to no
net axlal force, and moment M in the top flange and -M in the
bottom flange cancel so that no net moment My exigts on the cross-
gection. If U2 ig the strain energy of the two flanges due to the

warping normal strain ( 98 ), then

O R En L :
0= & L euEiis =} 281, (32)° az (.5)

If esh is the shear strain at the center of the flange,
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x = 0, then by definition

eshé%+g§=%;w (4.6)

where u is the x-displacement of the top flange center line,

Eq.(4.6) introduces the effect of transverse shear deformation
uged for bars'by Timoghenko (/o)) and later applied to plates
(7 ). Using Hooke's law for shear, the wvalue of Gsh glven by
Eq.(4.6) is assumed proportional to the total shear force s

, - :
= Q = K AGE _ ‘ (4.7)
- . ' , : " '
where A. is the cross sectional area of the flange, and K is |
the transverse shear coefficient. The equal and opposite sghear

forces Q, a distance h apart in the top and bottom flanges, gilve

.rise to a'torque-due to warping, Tw, given by

3

T =~ Ch= K'Afeh_(% gg -p) (4.8)

in which displacement compatibility at the web-flange joint

u = (h/2) & . : (4.9)

hasg been used to eliminate w in Eq.(4.6).

The total torsional couple, T,» on the cross section is &

glven from Egs.(2.2a) and (4.8) ag

4 1 3 ' h 8g :
Ty= Dyt T,= GO, -ag + K AGh(3 35 -y ) (4.10)

The strain energy due to shear deformetion of the two .

flanges, U3, is
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Lo -
2(- Q) €z = %3«£ 2K 4,0 (3 %E -¥) dz (4.11)

The total strain energy, U, at any insgtant t is given

from Eqs.(4.1), (4.5) and (4.11) by

I ) .
U =10 +0,+ Uy= z {)‘ [c;cs(gg)2+ amxf(%f)2+ 2K ATG(% %g -;o)z]dz (4.12]

The total kinetic energy at time t is
0 =1 T [ @)% e 22 | | (4.15)
L fp t PV % :

wherelthe firgt term is the Kinetic energy of torsional rotation
@ and the second term is that due to longitudinal (warping) dis-

placements of the two flanges.

Since our object here is to study tﬁe free vibrations of
the beam, the potential energy, Vﬂ of the external force system
1s teken ag zero. If T, and U from Eqs.(4.12) and (4.13) are sub-
stituted into the Hamilton integral given by Eq.(2.1), and varia-
tiong taken, and after integrating the first two terms by parts

with respect to t and next three with respectf%, we obtain:
i 2 g : 2
ﬁf {GC 28 ' a on@ 2 32y ey M}éﬁ
t, o‘[ 8 3,2 e D a2
-+{2EI Py _per, Lresnael® ‘ZP)} 8 |azat
I azz— f‘atz T ue az- .

T ty
+ .aaq +9o0PT g &
{ (PI}.,at & +2PI, o ») dz
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— i -a.g : h E‘g - 2 B gﬁ— 5 = R
ZO o0, o P EAG E )T ¢ pmr, X 629} at = 0 !

o 4

(4.14)
; \ i
Assuming that the valuesg of ¢ and? are given at the two

E fixed instants, the second integral vanighes. If the boundary
. conditions are such that the third integral also vanishes, then

we obtain the following two coupled equations of motion:

o%g . h g aw, 8%
¢ =2 + x'a on® -==)-f1 £ =0 (4.15)

5 3,2 AgGh(3 oy D 342 |
and. : ‘ A
g v e R IR e e e (4.16) " 3

£ 52 gt el S :

ot

. 4.4.(a) NATURAT, BOUNDARY CONDITIONS: ‘ .

~ In deriving the coupled equations (4.15) and (4.16) from'
(4.14) it was assumed that the expression

éo. My i an@ B + g1, 32 5
[ LS g (2 3z 2 4 gﬂ £ o 5

vanighes at the ends z=0 and z=L. This condition is satisfied
if at the two ends,

3

| : % T ' i

1 h vy o

[Gos gg + K Ag6h(5 v -‘w)J 8g =0, (4‘.1'?.) ML

and | |
ET_-'_’_ .S'?,l) = 0, (4.18)

Oz




' end warping, and hence give no end deformation. These conditions

The latter conditions imply no warping and zero shear forces in

of vibration in simply supported, fixed-fixed, and free-free beam

Eqns;(4.17> and (4.18) give the natural boundary conditiong for
the finite bar, and are satisfied if the end conditions are taken

ag:

T g =0 an 22 Jag (4.19)
o . oz :

Theme conditions imply no end rot@ticn and zero bending moment

in the flange-ends. In this case, the web ig congtrained against
rotation while the flanges are free to warp. This is the case

of a ''Simply Supported end''.

2. g=0 and?® =0 (4.20) °

These conditions imply constraint againgt end rotation as well as

define a ''built-in end''.

) : G ' od :
3. -5:—'" = 0 and GO_ -J% + K _ath(% 'U‘g ) =0 (4.21)

These conditions imply zero bending moment in the flanée ends ahd
no torque at the end oross section. The end im thus free from

trantions and the aonditlona abrrespond o a ''fras eni'',

' o 3 L h od o
4. W =0, GGs-é-g-%-KAth(-é-a%-&’)—O
or equivalently, ' ‘

w =0, &=o0 ‘ - (4.22)

the end flanges.

These conditions are useful for finding gymmetric modes
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(b) IIME-DEPENDENT BOUNDARY CONDITIONS :

The homogeneous boundary conditions discussed above
glve the free vibrationg of beams. For forced vibrations pro-
duced by the motion of boundaries, appropriate time dependent

end conditions are given by Prescribing et each end one member
of each of the products:

[ oou oK o e mn, 50
or eéuivalently of:
T, and 43%. : ‘
Of the many conditions thus obtained, the following are of more
theoretical interest;
1 tor@ue, T, prescribed, bending moment M = 0 or7 = 0,

2. g or %% prescribed, bending moment M = 0 or = 0,

., bending moment M prescribed, torgue 2= 0 orb =0,

4, ?P or %%)prescribed, torque Tt or @ = 0.

In the case of gemi-infinite beamg, conditions need be
prescribed at one end since all physical quantities at any ing-

tant are zero at the far end.

4.5.1. SINGLE EQUATION IN ANGLE OF TWIST:

Eliminating % between the coupled equations (4.15)and
(4.16), a single equation of motion in angle of twist ¥ may be

obﬁained ag:
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A : : 4, . 2 4
; BI.C %g - |B I C B S 3¢
s _T-f_ﬁ + REC i =2 -FILf T S' £ + fh — 5
e Ka, - "|0g K AG K Ay 2 0z~ 0t ;

[

: > I 4
T S PL, ¢ 1 aig = 0 (4.23)
8 aza

+ ' Bq.(4.23) i1s a linear partial aifferential eQuation of

fourth order, and 1s of the same form as the Timoghenko beam

B equation for flexural vibrations (Jo)), under an axial load P

2 B
which introduces en additional term - P -2—32[ (as spring restoring
Z

force) in the Timoshenko equation. It ig clear that the term

2@ bt i
.. = GGS : 2,15 analogous to the term - Pg—% :
4 - z

4.5.2, ANALYSIS OF VARIOUS THRMS:

i) Letting C =€I. = 0 and e Eq.(4.23) reduces to:
2 2 3
go. 28 sy DE : (4.24)

This equation represents Saint Venant torsion theory for slender

beams and does not include warping of the cross gection, shear

deformation and longitudinal inertia_effects. It is given in

"Love ( 76) and is discussed by Gere (32).

11) C, = 0 and K'= w, then Eq.(4.23) becomes:
‘ o SRR B 2y
: GGB _a_g & (]Ifh —-ga (Far 9 = 0 (4-25)

0z 2 d7° 842

N

P a-tz
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The second term represents Love's corrections(76) for .

the longitudinal inertin added to Mq.(4.24) and correnponds to
Rayleigh's correction(/ot), for lateral inertin in the elementary
theory for longitudinal vibrations.

t
i1i) If €I;=0 and K - =, Eq.(4.23) reduces to:

4 2 2 o
hole, Cnl 0 Go g + e I i 0 (4.26)
W 334 8 azz : o) at2

This equation represents Timoghenko's torsion theory which in-
cludes the effect of warping of the cross-section and has been

treated in detail by Gere(32).

Bt EELK oo il (A, 25 vadns enbos %
v i > 2
A b 4
g 2 ig L ‘*2?5 s - +f’Ip =0  (4.27)
w iz 2 9z~dt :

Thig equation represents Love's correction added to Timoshenko's
torgion theory and corresponds to Rayleigh's correction of rotary ,

tnertia('o9, in the Bernoulli-Buler beam theory.

¥ e i P Iz= 0, then Eq.(4.23) is given as:

& oy EOLI. a4y 0% L :
(—i—— + EC_) - GC + P =0 (4.28)
R a—ﬁ K'a6 07206 B 0% P P

This equation represents the effect of shear deformation added‘
to Thnéshenko's torgion theory.

“vi) The part of Eq.(4.28) given by:
O R ;s PL, 0Ly iy

o s v 4
oz

k' A 852042 K'AfG
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ariges from the coupled interaction of torsional deformation Al
wlith the bending effects of shear deformation and longitudinal
inertia. The %f% term is responsible for introducing at high
frequencies andtshort wave lengths, a new mode of wave transmis-

glon in long bars, and a completely new gpectrum of natural fre-

quencieg in finite bars.

4.6. NOﬁ—DIMENSIONALIZATION AND GRNERAL SOLUTION:

Eliminating # in Eqs.(4.15) and (4.16) we obtain the
complete differentinl equation in warping angle paal

- 2
(EIEO ) 342}) 7 (E PIDIZf . UBI(‘ Ii' - (’Irh ) 64' p
Kap LAY

U P
z K Apl X Af 2 9z" 0%
"l 02,  CI PI. ate ;
—eo X wer rep £ 4 o © (4.29)
S 9z P o K AG 3%
Let
g = g elPn® S (a.30)
: =no=ipid

g sh = B 8ty (4.31)
5 =3z/L ° (4.32)

where @ is the normal function of @, % the normal function of
W»s & the non-dimensional length of beam, i = Y-1, D, the natural
frequency of vibration.

Substituting Bqs.(4.30) to (4.32) and omitting the fac-
tor oiPn®, Bgs.(4.15), (4.16), (4.23) and (4.29) are reduced to:
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i S _-_1
(s*K%+ 1) § +)23%°%F - (e1/m) =0 (4.33)
%5 = (1-)25%a®) P + (n/2L) & -o | (4.34)
-1t 2 2 - '
(628} 105+ nB(e2a2+ )7 - 242y = 0 (4.35)
2.2,V o 00 o BaByuy
(PP )y +R (a2 a®)7 - B(1-Pa%a)7 2 =0 (4.36)
where : ;
" LS L S N (4.37)
o _ PIpL%0
N = 2—3& | frequency parameter, (4.38)
ECW
L2ac
K° = » Wwarping parameter, (4.39)
ECW :
I.n? .
a? = —~—% » longitudinal inertia parameter, (4.40)
o pELE | -
1 °
o BI
8% = = 2 s shear deformation parameter . (4.41)
K
and the primes for @ and % represent differentiation with res-
pect to Z.

The general solutions of Eqs.(4.35) and (4.36) can be
found ag:

| g = Ay cosh }\aaz + A2 sinh/)azz + AS cos)\ﬁ2z + A, sin)\ﬁez '(4.42)7

= ' ' 1 '
p = Ay sinh xayZ + Ajcoshhayz + Aasin)\ﬁgz + Agcos A Bz (4.43)

RO R N T

R S s e
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185 : wha-ra. .
1/2| 1/2

+ (aadzf 52)+[}azd2-82)2+ 4/)?1

Gg 2L
= S
ﬁz VE(SEKE"' 1)1/2

(4.44)

% ey
[(a%a8-s2) + 452] "7 > (22a®+s?)
lg agsumed.
| ' In oase : . 175
& e [(a2a®- s2) 7+ aAR] " ¢ (aPa®+ &) .
: we write '
‘ _ : : p )2 —11/al 1/8
1 2 2 2.2 2
R a“+ g%) - |(a®a%- &) + 4
“2 T T3P 1) (et [a : / ]
s =1 a, (4.45)

Then Eqs.(4.42) and (4.43) are replaced by

B = hycos hagZ + 1 Aysinhagl + A;008\ B2 + Aysin)) By (4.46)

=1 Asindagl + MyoosapZ + Aysin)\ Byl + Agoos) Bl (4.47),

Solutions of Egs.(4.42) and (4.43) or (4.46) and (4.47) are natu-

rally the solutions of the original coupled equations (4.15) and
(4.18). '

Only one half of the congtants in Eqs.(4.42) and (4.43)

are independent. They are related by Eqs.(4.15) or (4.16) as
follows!
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g, = 1-1->% [1 ¥>352ca§ . d%)] g b | (4.48)
-‘Aé? E_:ng 1 ;g%%g +q®) ]'.A' | (4-49-.)
211-

Ag - (4.50)

A' (4.51)

4 m; 1+ Bg(ﬁg_ 2)
oz . : 2, 2 2
; : al (s K2+ Thies
A = gf\[j-ié z t—ni]'Al (4.52)
"- 2 2K2+ 1) L 2 ‘
A= %f‘ [52&’%\‘3] A, (4.53)

Ay (4.54}

4 (¢.56)

ne 4
4.7. FRE UENCY & UATIONS AND MODAT, FUNCTIONS ‘ ‘
d\‘ ¢

‘ In section 4.4(a), natuml‘boundaxy conditiong were dig- ';'
eussed_. By combining thege conditiong in Pairg, nany typeg of ','
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» 1. Simple Support: 7
Bee gda, ;;3’: 0 (4.88)
=0, =0  (4.87)

3, Free End:

¥ =0, (s‘?K2+ 1);3‘- (2L/h)2;l-9= 0 (4.58)

The application of appropriate boundary conditions (4.56)
to (4.58) and, relations of integration constants (4.48) to
(4.68), to equations (4.42) and (4.43) ylelds for each type of
beam afet of four constants A %o Ay with or without primes. :
In order that the solutions other than zero may exist the deter-

;  minant of the coeffiolents of A's mush be equal to zero. This
leads to the frequency equations in each case and the roots of
thess frequency equation, >, 1 =1,2,3,...n, give the eigen va-
lues of the froblem. The corregponding modal functions, Bi and
é;i’ can be obta%ned accordingly.

' 4.7.1. SIMPLY SUPPORTED BEAM:

The boundary conditions for a beam gimply supported at
. both ends are: ;
i) 1

g = Y =0 at3=0

g=% =0 atz=1
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For the boundary conditions st 7 = 0, Eqs.(4.42) and (4.43)
give :-

A A O, M
i L _ : ¥
lag(s®K%+ 1) + 6%[a,- [BE(a®K%+ 1)- &%]ag = 0
Since the secular determinant, ie., (s°K=+ 1)(ag+f‘3§) # 0, there- -
fore it follows that: A =45 =0. (4.59)

For the second pair of conditions at 7 = 1, Egs.(4.42)
and (4.43) give:
Ay sinh X ag t 4, sin By =
and : , _ -
' Aot 2 1 g2(. 212 2 ®
[aa(s E“+ 1)+ g ]Azsinh N “E“Lﬁz(s % 1 ) S]A4sin >5B2- 0 |
(4.60)
For a non-trivial solution, the secular determinant must

vanish. This gives the characterestic euation:

(K% 1)(of + B2) sim)o, sinx8, = 0 - (4.61)

Since (s°K°+ 1)(e? + B2) # 0, the possible solutions are:
2 2

1]

Ay, ‘
?\0:2'-:0, Aﬁg';éO; %
aB;éO, )‘|f32=0;

o, )\132 =02

Aeg £0, B, =nm, n71,2,3,... ‘ y

The solu'tion)\a =0, )\ﬁ =0 is not valid and the cases Aa, £ 0,
ABy = 0 anda, =0, >\6 # 0, by Eq.(4.44) imply\ ®= 0 ana




‘
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2% = 1/5%a% vespectively. Using the Egs.(4.42) and (4.43) and
following the above procedure for}\a = 0, and for )2 = 1/52d2,
we can see that the former case leads to a trivial solution and

the latter to:

g =0, P = constent . (4.62)
The critical frequencyﬂhf = 1/s2d2 thus represents the first
thickness shear mode of the flanges (/oo). The existence of this
mode for the simply supported case of Timoghenko beam in flexu-
ral vibrations has been demonstrated by Trail-Nash and Collar (3),.
It is overlooked by Anderson ( 3) and neglected by Dolph ( 3) by

a wrong interpretation of the associate results.

The last case:
> g #0, >\B2 = Ny N=152 5, (4.63)
leads to the main solution of the problem, Letting MNop2= —n®n’
in Eq.(4.44), the frequency equation inwkg is obtained as:
s2ah % \2[1+ nznz(azﬁzmedee)]J, 28 I:Ilznz(szK2+ e K2]= 5 s
This equation gives two real positive roots:

> .
e ; 2. 2r 2 2. 9.0 0
.>\mn-——-——2 o l{l + n*1° (s +a‘ +de)} ,

1

2 1/2 ,
+ (-1 |1+ nzn?(sz-d2~szdgxz)]+ 4n21r2d2j’ (4.65)

This frequency equation (4.65) in 2%, hag an infinite

number of roots which in general represent two coupled frequency
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spectra. It may noted that the roots %gn'is always > 1/s%d%.
The roots greater than the critical value are also admisgible

since the game frequency equation is obtained for the case

)? > 1/32d2. Thus, both the rootsA 4.65) are admitted and con-

stitute the two uncoupled frequency spectra.

“Using (4.63) and (4.60) one gets:

. : A, = 0. (4.66)

The modal functions are obtained from Eqs.(4.42) and (4.43) with
i 1
- A s given by (4.59) and (4.66). These are given asg:

g, = sin nnz ' (4.67)

¥ h ;
Y = B [:n2n2(52K2+ 1)_;\2mn g ]coa nnz (4.68)

where')?mn being given by (4.65).

The second spectrum appears at higher frequencies, grea-

ter than the critical frequency >‘c given by

2

A

. = 1/5%a® (4.69)

and is due to interaction between shear deformation and longitu-
dinal inertia. Eq.(4.69) therefore shows the thickness shear
nature of the critical frequency while Eq.(4.65) shows the two

frequency spectra, uncoupled in the pPregent case.

The classical Timoghenko torsion theory provides only

one get of frequéncy spectrum, while the pregent analysis provides




two frequenoy spectra. The eigen valuesjk of the first set of
frequency spectrum cover the whole range from zero to infinity,
but those of the second set range from the critical frequency

%o &iven by equation (4.69) to infinity.

For this case of a simply supported beam, Aggarwal (3),
Tso (/oy) and Krishna Murty and Joga Rao (70} also illustrated
two gets of frequency spectra. It is to be mentioned here that
for the range of the values of the dimengionless parameters

covered in this Chapter, Ais less than >\

1
For the case, A > ’Xb it is convenient to use %y= ia2

and the characterestic frequency equqtion (4.61) transforms to:
L]
sin )\ a, sin A B, = 0 (4.70)

1]
where a, is given by Eq.(4.45).

: Hence, in case there is any extension from there on for
) beyond >\é ie., 1%s%d® > 1, care should be taken %o account

for the frequencies of the second spectrum which can be obtained

from Eq.(4.70).

By putting 32

= a®= 0 in Eq.(4.64), the equation for the
frequency parameter )\, neglecting the effects of shear deformation

and longitudinel inertia, can be obtained as:

e = n®n? (n®nl+ K°) _ (4.71)

which ig the same as that derived by Gere (32) utilizing Timoshenko

torsion theory.
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4,7.2. FIXED-FIXED BEAM:

In the oase of a beam which is built-in rigidly at both

ends, the boundary conditions are:

G- v

0 at Z =0,

and

g=%=0 at 2

i
1]

1.

Ai)plying the above boundary conditions to the general solutions,
Eqs.(4.42) and (4.43), the frequency equation, for the first set

(M < ,\0), can be obtained as:
2 - 2 cosh ), coshﬁz : i

A @12 52 (a%-2%a%) +(3°%-a%a® )]
(1= »2ePa®)2/2 (2654 1)1/7

sinh hag sin A, = 0 (a.72)
The frequency equation for the second set (A>A,) is:

i 1
2 - 2 cos Aa, cos A 52

.D\Esz ( 52—a2d2 )+(35°%-2%a? )] : ; 2 )
0\252(12_1)1/2 (s2Ko+ 1)1/27 sinxa, sin’ By, = 0 (4.73-

The modal functions for the first set are given 'by:

B = B(cosl’i)\azz-l- 8 N48 sinh) oyZ- cosA ﬁgz-ﬁqlsin).\ BEZ) (4.74)
- 1
?{) = G(cosh ?\aaz+/%%.—51nh %aez-cos>\522+/€sin>\ 522) (4.75)
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v&heré,;:_'_ R -
. 62(52K2+ fihe oo e ag(32K2+'1)+ a®a®
‘ ag(ssz'i- 1)+ g° ﬁg(ﬂng"‘ 1)- a%a®
:"ﬁg(szl{&u 1)f- g ' ag(ssz*' 1)+ a%a®
BE(sK%+ 1)- %% oZ(s®KP+ 1)+ o2
/,l‘ \ .=... cosh)ag:cosh B,
P otikie 80 ninh Nt o= sin B,
': T L 005h>\a24 cog X 132
=
A (1/66)ginh Aot sin B,

' The modal functions for the second set are s

iR, L e ; s _ 2
= B(cos ) G- ) Ng® sin Aol o8 A [322+ 1o8in A 322)‘

; 0(605 méz-k%% gin )a;Z— cos %52Z+Mlsin Aﬁzz)

where

Lveed

y '.l

cosg 7)0:;2- cogs A\ 52
8°0 sin Mug- sin NG,

= co§)\aé+ cos?\ﬁg
. /u2 (1/5'e)sin>\a;_+ sin )\ B,

]
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Since the coefficients in ¢ and W of Eqs.(4.42) and
(4.43) are related, the constants B and C, that appear in the

modal functions given above are comnected through any one of

the equations of (4.48) to (4.51) or (4.82)%0 (4.55).

4.7.3. BEAM FIXED AT ONE END AND STMPLY SUPPORTED AT THE OTHER:

With the end Z = 0, taken ag built-in end, and the end
2 =1 as the gimply sﬁpported end, the boundary conditionsg are:
=% =0 at z=0
and
1=y =t
F=tp =0 at 7=1,

-

The frequency equation obtained from applying the above

boundary condition to the general solutions, Egs.(4.42) and (4.43),

for the first get () <)\c) is given by: et

66 tanh\ o~ tan ABy, =0 (4.85)

The frequency equation for the second set () > Ac) is: - :

5'g ta_nh)\océ+ tan);ﬁg =0y

(4¢.86) . l

The modal lfunctions for the first set are given b:y‘f . J‘
5’ = B(&osh%agz; coth }\ag ginh )‘\0:22.— .cos 2 By | ‘ '
+ cot ABy sin B,z) (1.87) n

2}3 = c(coghkazzjg—g ginh )tagz- cos >\Baz+/'\3 gin A ﬁez) (4.88)

A
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. . \
¥ where
- (8 ginh Aa_+ sin A\B,)
Mg = Ay 2 (4.89
(1/8)cosh ) ag+ cos >\ﬁ2) -
The model functions for the second set are:
s 1 y g = :
¢ = B(cos )\a;z- cot )\m; sin N, ~ cos A B,z
+ cot )\ﬁg gin ﬂEZ) (4.90
| . O(OC.IEI)\I'I"Z - ﬂ]j sin?wx'z- cog AP Z+ 1 sin}\é z) (4.9
i e 2 pi il it ks |
- ; -
where ‘
L] | \
", = 8 gin >\cz2. -—_'_sin>\_52. (4
(1/0)o0s Aagt oo B,
4.7.4. CANTIIEBER BEAM WITH ONE END FIXED AND FREE AT THE OTHER :
Tor a Cantilever beam built-in rigidly at the end 2Z=0
80 that warping is completely prevented, and with a free end at
Z =1, the bounc}ary conditionsg are:
B==0 at 2=0,
% and : :
=0, (FKP+ 1) g - (2L =0 at z =1.
The frequency equation for the first sét, in this case,
can be obtained ag:
2
2 + I:% (a®aR- a%) + EJ cosh);ccz cos ) 52
(a2d2+ 62) A |
- sinb X a gin XB, = 0 (4.
ST | (1- }\252d2)1/2 (52K2+ 1)1/5 2 2
= e a SR S R
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1 The frequency equation for the second set is glven by:
g+ [}\2(3.26.2- 8% )+ zlcos)océ cos A Bg

A( 2(_'12.-'_ 2_) ' = :
s (Aesgag_l)§f2(521{2+1)1/§.51n>*“2 sinAB, = 0 : (4.94)

The modal functiong for the first set are:

S @ = B(cosh )\aEZT LTz r)_&sinh.)\azz—cog) ﬁgz-i-?'}/ésin)\ﬁzz) (4.95) :
?}-? = O(cosh Nagh+ %sinh )\azz-cos >\l322+/-*4s'in X.ﬁgz) (4.96)
Where

(1/8) ginh }xﬁg;sinh 32

9 cosh xay+ cosX By

M= (4.97)

(& sinh ), + ginM 32)
(1/8)cosh )\cxz-l- cos >\!32

i (4.98)

The modal functions for the gecond get are:

, # = Bloos hayt+ 8'07L s sinnay- cos Wh,2 +1 getnnB,2)  (4.99)

2{3 = C(cos )\aéz - %—:Sm 7&0:;213- cos A 52Z+/Uk5 sin A 322) (4.100).
where .
(1/8") sin)xcx;- sin) By :
l:= 7 (4.101) |
8 cosX gt cos)\ﬁa ‘
8 sinDan- sin) B
Mg = - . (4.102)

(1/8) cos )a;g-!- coskﬁg




The modal functions for the firstfare:

=21

; W= - 1———3, cog},a’éz + cos) ByZ
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4.7.5. CANTILEVER BEAM WITH ONME END STIPLY SUPPORTED AND F'RER
AL THE OTIER:

For a Cantilever bean simply supported at the end Z=0

and free at 2=1, the boundary conditions are:

= il
ﬁﬂ?}) !!!0 a'!‘. Z“O’
and

—

® =0, (82K3+ 1)g - (21,/11)?,3 at 2 =1,

The frequency equation for the first set, in this case
becomes :

\

6 tanh)yo,- 0 tan \By= 0 (4.103

The frequency equation for the second get is given by:

5'tan Ao+ 0 tan 28, = 0 (4,108

- 6 cos )\ 82

g = : sinh‘/\azz + ginX By2 (4.108
008h>\€t2 '

- sin A B

WP = £ cosh) @pZ + cos X ByZ (4.108
) sir}h},or.2 ;

e _
The modal functions for the gecond set can be obtained

]
8 cos>\ﬁ2 '
T e e—— sinxazz + gin B2 (4.107
cos }\az -

gin )\ B

4.1
6 gin) o (
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4.7.6., BEAM WITH FREW ENDS:

In the case of a beam which is free at both ends, the

" boundary conditions are:

1

=0, (s®€%+ 1) - (2L/n) =0 at 3

RN
o

1]
(o]

]

i
I

= 0, (s°K3+ 1);3; (2L/h)?};,=Q at z = 1.

The frequency equation for the first set, in this casge

‘can be obtained as:
2 -2 cosh>\a2 COB>\_ﬁ2 s

A l}\zagda ( 9.26.2-—32 )+(3a26.2- 52 )jl

+ {ra— ?\2526?)1/2 (s%K%+ 1)1/2

ginh >\agﬂin>\ By =0

(4.109)
The frequency equation for the second set is given by:

o ;
= 2 c0s Aa, cos >\32

2
A >\2a2d2 (a”a®-g2 ) + fﬁa.zdg—sg )

( >\232d2.... 1)1/2 (52}{2+ 1)1/§ - gin ,)\(125111>\B2= 0

(4.110)

The modal functions for the first get can be obtained ag:

o
It

B(cosh ) a2~ —b8 ginn Pay 2t cos NB,Z+H(1/y o)sinNBy2) (4.111)

<
]

C(cosh>\<x22~ &Sﬁ sinh/\m22+9 cogM ‘BQZ'P(l/ﬂZ“G)sin)\ BEZ) (4.112)
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wheare
i i 008h h ot = aos AP '
g = PO ptpe S0 Sy (4,113)
2 6 sinh \ag~ 6 sin ) B, .
The modal functions for the gecond set are given by:
= T : ' ; ; :
g = B(coa}\azz-ﬁ//\ssin >\oc2Z+(1/6)cos ABBZ?U\Gsin)\ﬁZZ) (4.114)
= ] : 1 1
W = Cleos hapz=-(£/8 JsinX ayZ+ 0 cos AByZ+(1/1ag)sin R By2) (4.118
- o ‘where i
cos Aa, ~ cos) B :
‘/’LG = T £ i £ (4.118)
8 gin )\0:2'!- ] sin)\ﬁz
: 4.8. ORTHOGONALITY AND NORMALIZING CONDITIONS' :
In this gection, the expressions for orthogonality and
normalizing conditions for the principal normal modes ¢ and P
are obtained for both the general case and for beams with vari-
ous gimple end conditions.
Let Eq.(4.33) be written in the form
; : 1 2 _!ll
4 D% = (an/n) gp = (8°K°+1)0
for two modes m and n as,
o i — _tt : . :
A sgﬁm = (2L/n)p - (s°K%+ 1) g (24.117)
n ; J .
2 27 gl dnip =
AL 5Ty = /P - (PKPa) ) ~ (s.118)

* Results from this part of the Ohapter were presented by the
author and X.V.Apparao at the 16th Congress of ISTAM held at

2 M.N.R.Engineering College, Allahabad, during 29th March to
4 ' 1st April, 1972. See Ref.(5().
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Multiplying Hq.(4.117) by #, end Eq.(4.118) by g, and
subtraoting Hq.(4.117) from Mq.(4.118), we have:

2D = (U@, F B B~ (G 7 g, 8,)

(4.119)
Let Bq.(4.34) be written in the form

N2s22% = 7 425 - (/D) @

for the two modes m and n ag,

ANE ofa® - P - azﬁljm ~ (n/21) Bm (4.120)

e

qeter o= 2}311‘- g% Z}:n - (h/aL)_g?n ' (4.121)

Multiplying Eq.(4.120) by %, and Eq.(4.121) by ¥, and
subtracting Eq.(4.120) from (4.121), we get:

(?\en- M2 ) s2q® ‘Z,Sm E’p_n = (2L/h)(;3m?:’n = Bn i’m)

m
: " SR
2.2, 2 - i 5 =
- PN, B R (4.122)
where
0% = (412/h2)4® = 2L /1, " (4.123)

Combining Bgs.(4.119) and (4.122), integrating over the

whole beam, and carrying out integration by parts for most of

the terms, we obtain:
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‘ o e e
(ot )52£ (8, g+ L2 ) az

m

1]

i 17('21:/11)(2;11 Aot %, By)-(e1/m) (e 4o+ B)
o}

(PP, B B0, -(asPPR) (@, B )}gz

]

[(m,/hxz;n e 7 T =B B B g 7
] L] 1
- (4P (% w3 ) (4.124)

. Applying end conditions of any combinations gives the
- orthogonality condition:

(B G+ 2R P ) az =0, m £n (4.125)

0

For m =n, the left side of the equations is identically equal

to zero because )\, =) .
Thus; tl}e normalizing integral:
i ( 8° +027R) az
cannot be obtained diréctly by pufting m =n in Eq.(4.125)
To evaluate this integral, we le£
X ,\m]:A ' | (4.126)

Dp = A+ &2  (4.127)

in which 8 A ig a small variation of A\, and )\n-—- /\m as Eha.pp-

roaches zero. Thus, we have
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® e = (4.128) . |
>\2n = (O + B2 )R =524+ é>\ 3 . (4.129)

.in which the higher order small term in the expression of ﬁ is

omitted.‘ We also have:

= - 'aBm J =,
& Anp. i

5. =P + B 55 (4.131)
wPn m g ,
e

2 |
g, = Ty Ex (4.132)
= - a%W = ,

B el (4.133)
Pn o e

where

a 3 a 3 a 3

5 13 e 0 + P ) (4.134)
a% - AT a b, dX 3B,

Substituting the above relations in Eq. (4 124) we obtain:

2>\6>\32} (93 +D_2‘;u ) az

a8, af_ - g, -

w .
= | (21/n) (2 g, —,d% W)~ cszxzﬂ)( = Ly~ %)
2 ] sl = :
- (4s”1/m%)( E-&'-‘- % ¥ny PN (4.135)
g B -

o

Dropping the subseript m, dividing both sides of the equation by




137

)5\\3 , and rearranging:

f(,Q_5+S£?;:)dZ-
(o]

«[ [EL/h)ZP - (%k%4) ¢ 1

af  asf1? d‘Z}J d*z,v ]
[(szxzﬂ )]} —(w)ﬁp} 8 - ( " { ?p- = ‘ef: 8 (4.1@6)
‘ o]

This expression can be further gimplified for beams of various

end conditions ag follows:

(1) Simply Supported beam:

-

1 ;2 SO 1 i Stac el s alisag
2 = i 2x2 o= —
.£(¢+I]*?P)d2—w~§——g>\52{(sl{:+1)¢ (h)?}%] i

212

4 =
+ (22X ] (4.137)
: h ann. v

(2) R ;;gg-ma Besin:': .

-2 _o 1 LVag
2 2
£(¢ +0° 9 )az = SE ):(s B 34 V0 ——

+ ax
2.2 = 1
45212 v
P = Lo ] (4.138)
h an )
(3) Beam Free at both endg:

1 -2 el e B §

J(@+029 )az = ———{ g —| (=) -(s%k%41)

o " 2 %g” ﬁd}\ i L 4
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h an.

TR
e 22 j | (4.139)

S

(4) Beam fixed at one ond, gimply gupported at the other:

F @29 az -

Bjs%% 7 - (—)?p} ¥
(432112 = ;P'

J vaf 4”12 v 4 gp
) —J(e?2u)g = +( )
i wE Wlaey zﬂ{s 40 o ax z:oJ

(4.140)

(5) Cantilever beam fixed at one end, free at the other:

g ~ &%) B~ 1
[ @ st epius =— sﬁ-é—-/,\l(h )% —(s2K24) §

; 2 212 1 aw
. 432)*@@ (s2K241)7 Eg+( 2)‘@ =
h ar | gy dA " n X | 5o

(4.141)

(6) Cantilever beam simply supported at one end, free atthe other: -

1 -5 T s L
I +0f Y )az = R Qf (-—)2y - (s K%4+) ﬁf]
P e ) 1 gn _]dg
- ( ) —~ = (s®K%41)¢ - (5) :’-—
ol i ax \z= 78 i i an
o e i
451 R
$ 5 52 )zj)- . (4.142)
h al

= e
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It is also suggested that the normalizing integral can
be approximated by discrete values of @ and “*'along the beam.

Expregsion of Normalizing condition:

Let Zqs.(4.33) and (4.34) be written as:

2 e B, (4.143)
N2 = o (aPK2+ 1)¢ + (20/n) 2p :

ABBq® Bo _ g2 97',,'_'4%} - (/21 §  (4144)

Multiplying the Eq.(4.143) by & and the Eq.(4.144) by
% » adding the resulting equations, integrating over the whola
beam, and carrying out some integrals by integration by parts,

we have:

1 -2 - 1
NPT G v 2o )az = f [ e &) G5 -7 »)
: (n]

2 -2 B SR
r @ | gty g ]dz

o ' 2
1 et
= { [(52K2+ 1)¢ (%)56 W + (-5——--)2,; t ( )Zu ]dZ (4. 145)

Eq.(4.145) is the expression of the Normalizing condition which is
" very useful in analyzing the forced vibration problems.
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4.9, APPROXIMATE SOLUTIONS BY GALRRKIN'S TECHNIQUE :

In this section, approximate sclutions are obtained,
for the problem of free torsional vibrations of thin-walled
beams of open section including the effects of longitudinal
inertia and shear deformation, utilizing the well-kmown Galerkin's
technique. Solutions with Galerkin's method are illustrated for
fixed-fixed beam and for a beam fixed at one end and simply sup-
ported at the other. :

4.9.1. PIXED-FIXED BEAM:

To satisfy the above boundary conditions 1n'this case,
the normal function @ can be aggumed in the form

g = =z D, (1- cos 2nnz) (4.148)
n=1 e
Substituting Equation (4.146)in the differential Equation
(4.35), orthogonalizing the resulting error with the assumed fun-
ction; integrating the obtained function over the whole length of

the beam and equating it to zero, the frequency equation 1n?\2 can
be obtained as:

2

5 )% %a®- 22| 34an2n? (%4 a2+ 52d2K2)|+ 4n2“2|4h2ﬂ2(82K2+ 1)42]= 0

(4.147)

* Repults from this part of the chapter were presented at the 17+th
Congress of Indian Socilety of Theoretical and Applied Mechanies,
held at Birla Ingtitute of Technology, Mesra, Ranchi, during
December 2 -551972. KL{—{S‘?)
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Bq.(4.147) gives two real positive roots given by

)\;n - -;;12'? [0?13+4ngn2(52+d2+32d21{2)'§>.
e : 2
F 1) l5+4n21t2(53d2+32d21{2)1

i ‘ngngszag [4:191:3(521& 1)+x3] 142 1 (4.148)

In arriving at Eq.(4.148), only ohe term of the infinite
series of Eq.(4.146) is utilized. Hence, Eq.(4.148) gives upper
bounds and has an infinite number of roots which in general re-

Present two coupled frequency spectra.

By putting s*= a°= 0, Eq.(4.147) reduces to:

3 >F - 4 nfn?(anfn®+ K2) = 0 : " (4.149
and the expression for the freqﬁency parameter >\becomes=

Bt e TR
b Ts (4n*n°+K") _ (4.150

which is seme as that from Eq.(2.73) for A2 =32 = o.

4.9.2. BEAM FIXED AT ONE END AND SIMPLY SUPPORTED AT THE OTHER:

X

The normal function satisfying the boundary conditions

1n this case can be agsumed in the form:

e [- -] 1
g = 51 D, (cos BF 7 - cos 5%" z) (4.151
n=

~Substituting Eq.(4.151) in the Eq.(4.35) and following




the Galerkin's method, the frequency equation in A2 can be

obtained as ¢

16 1* 6%a%- )% [ 16420 n®r?(s2+a%+ s%a%k®) |

From Eq.(4.152)

2
1

Ny = =

B0 46 sa®

PEC) {[ 16420 n®r2(s§a%+s%a2e?) ]2 _
g nznzszdz[ﬁ nznz(szzzﬂ)mb | 1/2]

By putting s°= a° = 0, Eq.(4.162) reduces to:

142

+ %2 [ 41 n®®(s®k%+ 1)+ 20 K] = 0

we have:

[{16420 n?n2 (g2 +a%+s%a%k®)

16 2% n®n® (41 n®n2+ 20 K8) = 0O

and the expregsion for the frequency parameter P\'becomes:

which ig aé.me as that from Eq.(2.76) for A 2 < }?2 = 0,

e E‘g-E (41 n21r2+ 20 Ka)

1/2

(4.152) 4

(4.153)

(4.154)

(4.155)

I
'3
I

i

{
|
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4.10. RESULTS AND CONCIUSIONS :

For a given beam with K, s and d known, the >\1(i=1,2,3,...)
can be found from the appropriate frequency equations and the
corresponding p, are then calculated by Eq.(4.38). Howingxno
these frequency equations are highly trangcendental andNnG%=to
be golved gimply. Thig difficulty is overcome by the use of
bisection method on digital Computer IBM 1130 at the Computer
Center, Andhra University, Waltair. The resgults are obtaihed
for gome typical boundary conditlons angd variousg combinationsg
of K, 8 and d.' The results are presented for the special cage
s = 2d, which ig usually the case for meny Indian Standard wide-
flanged I-beams.

Let )\0 be the classical eigen values obtained in Chapter
II neglecting the effects of longitudinal inertia and ghear de-
formation and.po, the natural torsional frequencies correspond-
ing to %o' Comparing the mechanigm of vibration of the clagai-
cal beam baged on Timoghenko Torsion theory and the present
beam based on the improved theory, we note that the 6lassical

beam ig equivalent to present beam with longitudinal inertia

and ghear @onstraints.

Therefore,

aﬁd
>‘/)xo=p/Po=q,q <2

The ratio of ’A/,xo or p/p,, denoted by q» will be referred

e ———— i af 1




.to the ''modifying quotient''. The variation of the ratio

 inertis parameter d for the firsgt three modes of vibration of

So, for the sake of gimplicity and emse of prementation, Fig.4. 4
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%/,Ao (also the modifying quotient q) with the longitudinal

a simply supported beam is plotted in Fig.4.3, which ghows the

corrections in the natural torsional frequencies owing to the

individual infiuence of longitudinal inertia. In plotting this

figure the warping pafameter is taken as equal to 1.0 and the

shear parameter s as equal to zero. It can be obgerved from
Pig.4.3 that the reduction in the torsional frequency due to |
longitudinal inertis increases with incressing velues of d. For ||
a maximum wvalue of 4 = 0.1, the reductlon in the torsional fre- ;
gquency can ﬁe observed from the graph as about 10 percent for
the firgt mode, 36 percent for the second mode and 65 paercent
for the third mode. Therefore it can be conecluded that the in- :
fluence of longitudinal inertia on the torgional frequencies 1n-é
creases profoundly for higher modes of vibration. |
For a eimply supported beam, its higher harmonic corresponﬁA?
to the fundamental of another simply supported beam of ghorter |
span. The nth frequency of gimply-supported beam of span I ig ?
equal to the fundamental of another such beam with gpan L/n.
is plotted between the ratio X/C\ and K/n for values of |
ng = 0.5, 1.0 and 2.0. For constant values of K and s the vﬁluaé;
of :K/,ho can be read from this figure for different ¥alues of n?l
(ie., for different modes of vibration). If n is kept constant,‘f
the values of ;\/:xo can be obtained for various combinations

of the warping parameter K and shear parameter g. In plotfing




3. C‘.crrechons in_natural frequencies o; a sump[ys

beam owing to !ongtjudmal inertia for the first three
ot Vibration (5=0)




L4 c:orr-ec’clons in_natural -Frequenmes of a smp!y Supporied
‘beam oWlnq to E.h'aar cleforma’mon (dzo) ;
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reduction becomes gignificant for higher modes of vibration.
It can be also observed that comparatively the individual in-
fluence of shear deformation on the torsional frequency of

vibration is more brofound than that of longitudinal 1nertia.

The combined effects of longitudinal inertia and ghear
deformation on the firgt four torsional frequencies of the
first set of simply-supported, clamped-gimply supported and

' clamped-clamped bewms (s = 2d4) are shown in Tables 4.1, 4.2
and 4.3 respectiveiy. The values of the frequency parameter
M2 ang modified quotients q = M/ Mo for the first four modea
of torgional vibration are given in these tables for various

combinations of the Parameters K, g and 4.

It can be obgerved from Table 4.1 that in the cana of
gimply-supported beams for K = 0, 01, s =0.10 ang d = 0.05,
the modifying quotients for the first four modes are respectively
0,944, 0, 826, 0,705 and 0, 603 and therefore the reductiong in
the firgt four torsional frequencies are regPectively by 5.64;,
19, 4/ » 29.5/ and39. s . .For K =10.0, 5 = 0.10 ang 4 = 0.08,
the modifying quotients for the first four modes are respectively
0.986, 0.934, 0.851 ang 0.762 and therefore the reductionsg in
the first four torsional frequencies are Tespectively by 1. 42
6.6/ , 14.9) ang 23. B+ Pron thege valnes. we-ecad observe that
the inerease in the value of warping parameter K reduces the
effectg of longitudinal inertis and shear desformation on the

torsional :Erequencies of vibration and that for smaller valueg
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of K the reductions in the torsional frequencies at higher
modes owing to these second order effects become quite gigni-
ficant and ghould be taken care of. Similar obgervations can
be made from Tables 4.2 and 4.3 for clamped-gimply supported
and clamped-clamped beams. It can be also noticed that these
reductions in the torsional frequencies due to‘longitudinal
inertia and shear deformation are comparatively high in the
onpge of olamped-clemped heams than in tha onpa of aleamped~-

pimply supported or simply-supported beams.

The results for the second set of frequencies for the
simply supported, clamped-simply supported and elémped—clamped
beams are given in Tables 4.4, 4.5 and 4.6 regpectively. It
must be recalled here that these second set of frequencies
exist golely due to the inclusion of these second order effects.
From Tablés 4.4 to 4.6, we observe that even in the éase of
sécond set, the effect of increase in the values of the para-
meters s and 4 is to reduce significantly the frequencies at
higher modes of vibration. It ig interesting to note that the
increage in the wvalue of the warping parameter K is having a
negligible effeot on those reductions in the Lrequenciepn of

the second set for all the three boundary condltions consldered
here.
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CHAPTER - V
FINITE BLEMBNT ANATLYSIS OF TORSIONAL VIBRATIONS OF SHORT WIDH-

DIANGTD THIN-WATIED TIAMA THOLUDI NG 0100 mirrmors o LONG ITUD TNAL
.3
INERTIA AND SHEAR DEFORMATION.

5.1. INTRODUCTION:

The problem of torgional vibrations of short wide~flanged
thin-walled beams including the effects of longitudinal inertia
and shear deformation is completely golved in Chapter IV utili-
zing rigorous mathematical analysis. The highly transcendental
frequency equations obtained for various end conditions eould be
solved only by lengthy trial-and-error procedure. Except for the
case of simply-supported beam, the results for other complex boun-

dary conditions could be obtained only by expending congiderable
effort.

Even the approximate analytical methods such as Rits and

Galerkin techniques have a tendencey to become very tedious for
some complex boundary conditions. The complexity of the analyti-
cai techniques even for simple end conditiong emphasizes the need
for physically satisfactory approximate golutions. To thig end,
. the present Chapter aims at developing a finite element analysis
of torsional vibrations of short wide-flanged thin-walled beamsl
including the effects of longitudinal inertia and shear deforma-
tion.

* A paper by the author based on the results from this Chapter
is accepted for publication in AIAA Journal, See Ref.(52.).




157

The baplo thoory behind the finlto element method roi
dynamic problems is briefly presented in Chapter III and is
shown to gilve results which are in excellent agreement with the_

exact ones. This chapter, therefore, extends the finite element
method to torsional vibrations of doubly-symmetric thin-walled
beams of open geection inecluding the effects of longitudinal
inertim and sghear deformation. New gtiffnese and mass matrices
for a thin-walled beam are developed in thig chapter, for the
first time and, to the best of author's knowledge, there 'is no
other finite element formulation for this problem available in
the literature. The ﬁethod developed in this chapter is appli-
cable to uniform as well as non-uniform beams with any complex
boundary conditiong. A consistant mass matrix is made use of
in conjunction with the corresponding stiffness matrix for find-
ing the frequencies and mode shapes for free torsional vibfa-
tiong of uniform thin-walled beams with various boundary condi-
tlons. Results obtained are compared with the exact ones ob-

tained in Chapter IV and an excellent agreement is abserved.

5.2. MODIFIED ENERGY EXPRESSIONS:

Iwo approaches are made %0 our present problem. In the
first appfoach, the gtiffness and mass matrices are developed
in terms of the total angle of twist # and the warping angle
directly utilizing the gtrain and kinetic energy expressions
(Eqs.4.12 and 4.13) derived in Chapter IV. By assuming only one
degree of freedom for each of the angleg @ and.yb, the gtiffness
and mags metrices each of 4 x 4 size are obtained which include

the second order effects. But the matrices obtained in this
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approach, though not shown here, does not satisfy the exact

boundary conditions and thug could not yield good results.

An alternative approach which will be discusged in de-
tall in this chapter is to split the totel angle of twist inte
two parts: One part ig the twist calculated by neglecting the
shear strain in the strain energy expression, (Eq.(4.12) ); and

the second part givegs the contribution due to shear strain.
Let us define the total angle of twist & ag:

#(z,%) = @ (2,8) +9_(z,4) : (5.1)

e
where the subscriptA@enotes the part of the solution when the
'shear strain has been neglected, and the subscript s denotes
the contribution of the shear strain to the total angle of
twist. This type of choice has the advantage that when ﬁ is
equated to zero, the reaulting expressions reduce back to the
equations for the lengthy beams pregented and golved in Chap—
ter-II, Thig approach is quite convenient ag it satigfactorily

encompassges all boundary conditions of the present problem.
By substituting Eq.(5.1) into Eq.(4.9) we obtain:
u o= (/2) (dy+g) (5.2)

Substituting of Eq.(5.2) into Eq.(4.6) gives:

o
h
@'Fe]:lg-af-'i'

aviisg

;Ea (5.3)
Z

From BEq.(5.3) we can write:

e %—-— (5.4)

™
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and

g :
€op = % 3;# (5.5)

By substituting the expressions for 7pand € gn from Egs.(5.4) and
(5.5) respectively into Egs.(4.4) and (4.7), the expressions

for moment M and shear force Q can be obtained as:

n 5%,
-M=E%§a? (6.6)
and
3¢
e AgG § 5 (5.7).

By substituting Eq.(5.1) into Eq.(4.1), the strain

energy U1 due to saint-venant torsion can be obtained as:

T, og, of 2
e g T s AR : 5.8
+ ) .£ 3(62 . ) Z ( )

By substituting Eqs.(5.6) and (5.4) into Eq.(4.5), the

strain energy U2 of the two flanges due to warping normal strain
becomegs:

I aagt 2
= £ EC,_( ;;E‘) az (5.9)

Substituting Egs.(5.1) and (5.7) into Bgs.(2.2a) and
(4.8), the expressions for the Saint-Venant torque T, and the

torque due to warping T can be respectively obtained ag:

g g
T, = 6o, ( B SRt (5.10)
z Oz
and o
2
= - t— ’ g _...ﬁ
T Qh =K AG 3 % (5.11)
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Hence the total torque Ty (See Eq.4.io) can be obtained
from Eqs.(5.10) and (5.11) as:

oF o 2 of
m, = GO (—L + —B) +K A % —£ (5.12)
8 az az aZ

Substituting Eqs.(5.7) and (5.5) into Eq.(4.11), the strain
energy due to shear deformation of the two flanges, US’ be-

comes :

Uy %}' x' Af (——ﬂ) az ' (5.13)

The total strain energy, U, at any instant % (See Eq.
4.12) is the sum of the energies U,, Uy and U, and therefore

given by
T 9 ;) a2
v=17 GC(—?—t+—g§-)+I}C( ¢’°)+KAG—-(£§)1M(514)
Gl 8 3z 0z 0z £ iz

By substituting Eqs.(5.1) and (5.4) into Eq.(4.13), the

total kinetic energy, T, at time t becomes:

1 3 3 a2
T =%f [f’I '(-E-i’- +-gﬂ)2+ Pa ( ¢t)2] az : (5.15)
_ o 0 o0t W9zt

5.3. MODIFIED NATURAL BOUNDARY CONDITIONS:

In terms of the angles ﬁt and ¢8 the natural boundary
conditions given by Egs.(4.19) %o (4.22) can be modified as
follows:

" (a) Simply supported end:

9%g
g.o=0; P.=0 —2t =0

Y e R g




(b) Pixed end:
. = ag’t i )

Bg= 05 @=0; ey 0 (5.17

(c) Pree end:
. 2 =

.;33' -‘0, 6c, ;;.i + (60 + K A6 h /2) B-j 0  (5.18)
@ o _

3, 3 : . Cih

Og 0z

- jq)_ : ; t
=4 o
The conditiong given by Egf(5.1%) are useful for find-

ing gymmetric modes of vibration in simply supported, fixed-

fixed and free-free beams.

5.4, FINITE ELEMENT FORMULATION:

In the present formulation, for each finite elemént of
& ghort thin-walled beam in torgion including the effects of
longitudinal inertia and shear deformation in addition to warp-
ing, there are four generalized nodal displacements at the j

end of the ith member. These nodal digplacementg are:

¢t3= angle of twist neglecting shear atrain at the shear

center about z-axis;

] B
- @, .= rate of change of @, at the shear center about z-axis;
t] : 1

@ .= angle of twist due to shear strain at the shear cen-
8j :

ter about z-axis;

1
¢33= rate of change of ¢s at the shear center about z-axis;
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-where subscript j denotes the generalized displacement at the
J end of the ith finite element. Similar generalized nodel

displacements exist at the K end of the element. The prime i
denotes differentiamtion with raspect to z.

Assuming the angles Qi and ¢s within each finite ele- - -
‘ment to wvary cubicly the displacement functions take the form:

gt(Z)'= at bz + 01z2+ dlzs ,(5;20)
and

¢s(z) = a,+ baé - c2z2+ d2z5 (5.21)

To establish relationships between the displacements:

at any interior coordinate z in terms of the generalized nodal
coordinates, the eight arbitrary constants in the agsumed disgpla- *

cement functions must be determined.

After defermining the coefficients in Eqs.(5.20) and SSaho

(6.21), the angles th and Q’s at any coordinate z within the |
element in terms of the nodal displacementg gtj’ aﬁtj/az, gtK’ ;
j

and g, . /dz and, Qfsj. aﬁsj/az, x> and OF x/?z can be respec-
tively defined as follows:

;.

{n
5

&

g, (z) = [(1;3§f faL0), z(1§-2f1+,§f). “ﬁf‘éEf)-”(“gl”’ﬁ)k%n(tji

and

{8
(5.22) j
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_%(z){(l;zﬁ 212%3),5(1-22,+32), ('s;sf;'z;f),zc;;tl+;§)1nsnct>

(5.23)
where %, = z/1.

Egs.(5.22) and (5.23) can be written in an gbreviated
form as follows:

By(z) = % (a) Bys) (5.28)
. - |
S Ao LG | (5.25)
~ where _ ‘ _
51N=‘ [Bygs Biyo Bigr Fog ] -~ (5.26)
Bt Loy g O O] (5.27)

and X (z) is given by Eq.(5.23).

 _3imi1ar1y, for the firgt and’gecond derivativeg of the
angles ﬁ; and ¢E, the matrix relations can be written ast

' !'if;‘(z) - (i@ﬁwrm! iltz)ﬁwtt) . (5.28)
é;'ca) e -(x(;mw(m"- £, ()R () (5.29)
Pa(z) = (R(2)R y(4))' = 31<z>ﬁsﬁf£) | (5.30)

aad‘- . : ".’ ; = ; .
P (2) = (K(2)R () "= &, ()8 (4) (s8]

where L (z) end A,(z) are defined by Iqs.(3.27) snd (3.28).
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The generaliged velooities mnd acoelerations can also be
expressed in terms of the discretized nodal velocities and

accelerations:

That ig:
| B (2) = K(z) By (t) (5.32)
Py(z) = X, (2) Byy(t) (5.33)
Py(x) = K(s) Ryy(t) (5.34)
- , By(2) = K(=) Ry (4) (5.35)
A o ot i g
) ﬂﬂfz) = A(z) ﬁBN(t) (5.36)

where dots denote differentiation with respect to time t.

e

5.5, Dgrivajioh of Element Matriceg incluging Second Order

’  Effects:

1 e expressions for the strain energy U, and Kinetic
; enlergy Ty,given by Egqs.(5.14) ang (5.15) respectively, for

an element of finite length, 1, can be written as follows:

1}

1 } L] ] 2 vy 2 t h2 1 2
Ui i / Gcs(¢t+ ﬂs)” +EGW(¢t ) + K AfGEUJB)- dz (5.37)

1 .S 5
{ [Prpmtwa) + P (#,), J az (5.38)

=
I
o[-

Direct substitution of Egs.(5.24) to (5.36) into Egs.(5.37)
A8 VNN Aabya sa Nl

and (5.38) and the resulting expressiong intg\Hamilton's Prin-

ciple, Eq.(3.34) for W = 0 » ylelds (for the Nth element):




e
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L] FI : 1""1-‘ .
2 T =T
Bym Gl e v }Etnllﬁtud"’{%}r‘-
0
1
14l o7 - = 1T T ~

d Gordas iy ¥R oL
=P cs £ #fG T S Bn &y & gy 42

GO 1-.-1‘13.-!['— - S ] S
" F [{RtNH’& sNdz'*fRsN“i%RNdszt
=D : (5.39)

Eq.(5.39) can be also written more concisely as follows:

-5 = 3f2 [(F’IPI') qN My qN- (EUW/L )q}r qN] dt = 0

1
' (5.40)
In Bq.(5.40) the terms (f’IPL)mN and (ECW/La)KN denote
respectively the new mass and stiffness matrices My and KN
respectively of the Nth element. The matrices mN, KN and qN

are glven below:
i =T
m m
21
11
L /gg%éi; (5.41)

oy

Bl

22

- S = S S P
R il T T AL




. and

where

gﬁa

H' a

21

i

’
tN

156N°
22N

54N°

-13N

B6NZ
3N
~36N7

3N

1560°
22N

5AN®

~13N

.
12N%2
6N
-128°

6N

166

aN

13N
-3

-3N
=1

1308

-3

Sym.

156N~

-22N

Sym.
Z6NC
-3N

Sym.

166N°
—22N

Sym.

10N°
-GN

(.42)

(5.43)

(5.44)

(5.45)

o

oo




36N°

2 3N

: 30N° ~36N°

3N

36N°

= BN
: 30N° | .36N%
3N

ZEN°

= _ (sPRP+ )| O
22 30 s°8° |-36N°
3N

167

~3N
=1

~3N

4
-3N
=1

Sym.

3682
~3N

Sym.

B6N°

-3N

Sym.

36N2

=3N

atN = [ ﬁtj’ Lﬁ;j! ¢tK’ Lﬁ;K ]

1= [Py Yoy B Wi ]

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

and the non-dimengional parameters KE, d2 and 52 are previougly

defined by Eqs.(4.39), (4.40), and (4.41) respectively.

The equations of motion for the discretized system can

now be obtained using Eq.(5.40).
integral expression of Eq.(5.40) we obtain:

%

Taking the variation of the

s }2 [ (PIL) Eaﬁﬁm SN- (ECW/LS) §

LS i ] at =0 (5.51)
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which after integration by parts over the time interval gives:

ot fin - o
b : - {: & Ei [(PIPI:) ﬁN §N+ (EGV/IP_‘) “N EN ]d‘h =0 (5.52)

' The first term in Eq.(5.52) is seen to vanish in view of
the agsumptions made previously that the virtual displacements_
TSFLN are zero at the time instents t, and t,. Since the virtual
displacementa can be arbitrary for other times then the only
- way in which the integral expression in Eq.(5.52) can vanish
is for the terms within the brackets to equal zero. Therefore,
the governing dymamic equilibrium equations for the discretized

systems are:
5 - i T
(PIPL?quN+ (z0_/1°) Kya = O - (5.53)

Assuming that the displacements undergo harmonic osecilla-
tion, the displacement vector g can be written as: .
N
q ™ aNo %5 (B.54)

where 5N ig a column vector of torsional emplitudes of the
general torsional displacements. Substituting Bq.(5.54) into
(5.53) gives: ,

' RS ¢
f [ (ECW/I-S)KN - (PLT pi)ﬁﬂ]' Qy © ol (5.55)

e

%
2 R ik
e
. oo
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aGoucan
Deviding throughout by»EGw/I-3 and cancelling e = ,

Eq.(5.55) becomes
i EE o 2 b i)
[uN][qu.)\[mN][QN] (5.58)
where Ae is the non-dimengional frequency parameter defined
Previously by (Eq.(4.38). Eq.(5.56) represents the equations

of motion for an undamped free oscillating systém including
the effects of longitudinal inertia and ghear deformation.

5.6. Equations of Equilibrium for the totally aggembled beam:

Following the procedure outlined in sectlon 3.5 and utili-
sing the élement gstiffness and mass matrices Presented in gec-

tion 5.5, the equations of equilibrium for the totally agsembled

beam can be obtained ag:

-

[“-][5)=/\2[5][Q] (5.57)
where E} m and Q denote the totally assembled matrices corres-
ponding to the element matrices K, EH and BN defined previously.
With the four generalized disﬁlacements possible at each node
and with the bar segmented into N elements, the total number of
degrees of freedom is 4 (N+1). The formulation of the matrix
equilibrium equation, Tq.(6.67), inoludes all possible degrees
of freedom, both free and regtrained. The displacement vector

Q of this overall Joint equilibrium equations is comprized of
both degrees of freedom, the unknownsg of the problem and known

support displecements or boundary conditiong.
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- 5.7. Boundary conditions ugeful for Modifving the total
Matriceg: y

: It should be recalled here that for the present

Tinité element formulation, totally four generalized displa- jl
cements are considered at each node. The following are there- 1]
fore the boundary conditions to be utilized in order to modify

the total stiffness ang nass matric‘es for various combinations

'qf end supports.

() Simply supported end:

;zfs: 0 ; ¢t= 0 (5.585

ds =_ 0 ; ¢t = 0; 4, =0 (5.59) 3 j
(¢) Free ena: ‘i

The total matrices need not be modiffed in this case. i

(a) Lo, =0; I g, = o (5.60)
(5590,
Eqs,. (5.60) are useful for finding symmetric modes of

vibration in simply supported, fixed-fixed and free-free beans.

BrER R BRI Lo sy A R
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6.8. RESULTS AND CONCIUSIONS :

A digital computer programme is written in Fortran IV
which can'giva results for any set of boundary conditions.
‘Results for gimply supported and fixed-fixed beams for values
of K =1.541, s = 0.046 and 4 = 0. 023, are obtained on IEM 1130
Computer at Andhra Univergity, Waltair and are presented in
Tables 5.1 and 5.2.

For the simply supported case, the first and second sets
of values of A obtained for the first four modes of vibration
for a division of the beam into N = 2 and 3 segments are shown
in Table 5.1 and are compared with the exact results obtained
uging the_analysis presénted in Chapter IV. For, the fixed-
fixed beam, the first set of values of ) obtained for the first
four modes of vibration of N = 2 and 3 are ghown in Table 5.2
and are compared with the exact regults. The exact results
for the simply supported case were obtained uging Eq.(4.65)

and for the fixed-fixed beam, the results were obtained uéing
Eqs.(4.44) and (4.72).

It can be seen from Tables 5.1 and 5.2 that for all cages,
excellent Tresults have been obtained even for very coarse sub-
divisions of the beam. Since the stiffness and mass matrices
including ghear deformation and longitudinal inertia seperately
involve double the number of degrees of freedom than those that
exist if they are neglected, twice ag many natural frequencies

regult. In Table 5.1 the lower and higher speectrum of frequen-
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ciles obtained can also be observed to be in excellent agree—
ment with the exact ones. In Chapter IV, we have discussed

thias second set of frequencies in detail.

Uging the above stiffness and mags matrices, beams with
various other boundary conditions, can be analyzed eagily. A
beam with wariable cross section can slso be analyzed by deévid-
ing the beam into a number of segments and assuming that each
gegment has a congtant oross msection. Iq all cases (as we
obgerved from Tebles 5.1 and 5.2), the method gives an upper
bound to the exmect frequencies of the system. The approach
Presented in theAChapter is quité general, satisfactorily en-
compasses &ll boundary conditions and can be extendéd to sta-
~tic and dynamic stability of uniform and tapered thin-walled

beamsg.




a2

-

CHAPTER - VI
FORCED TORSIONAL VIBRATIONS OF SHORT WIDE-FLANGED BEAMS WITH
LONGITUDINATL INERTIA, SHEAR DEFORMATION AND VISCOUS DAMPIHGf

6.1. INTRODUCTION:

In Chapters IV and V, the problem of free torsional
vibrations of ghort thin-walled beams of open section, includ-
ing the effects of longitudinal inertia and ghear deformation
ig completely analyzed utilizing the exact and approximate ana-

lytical methods and the powerful finite-element technigue.

‘ With regards to the forced torsional vibrations of thin-
walled beams of open section very few studies are available in
the literature. Tso ('04), extended the Timoghenko torgion
theory for coupled flexural-torsilonal vibrations of thin-walled‘
beams of open sections and presented a formal golution to Gers's
theory (22) under general loading conditions and general boun-
dary conditions. Aggarwal ( 5), congidered the problem of
forced torsional vibrations of thin-walled beams of open section
under very general loads including the effects bf longitudinal
inertia and sghear deformation, and solved the gpecific case of

a simply supported beam with a step torque impuléively applied
at the mid-point. He compared the results obtained for the
above problem, with those obtained utilizing Timoshenko torsion

theory. But in all these studies the effect of damping «3= not |

* A paper by the author, abstracted from this Chapter, is accep-
ted for publication in the August 1976 issue of the Journal of
the Aeronautical Society of India. Saa faf. €53)
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congidered.

The present Chapter therefore denls with the study of
foroed torsional vibrations of doubly-gymmetric thin-walled
beams of open section such ag an I-beam, including the effects
of longitudinal inertia, sﬁear deformation and viscous damping.
Vigeous damping forces arising geparately from toraiohal and
warping velocition are inoluded in the agquatlons of motion and .
‘tha oéuploﬂ fundamental equations of motion ars formulated in
terms of angle of twist and warping angle. The method of molu-
tion is demonstrated for arbitrary external torque for the
beam having both ends simply-supported and numerical regults
are pregented for the case when the torque is uniform over the
span and varieg sinusoidally in time. MAmplitude response is
Plotted versus torsional frequency for varying amounts of tor-
gsional and warping damping, and ig compared to the response for -
the classical beam (baged on Timoghenko torgion theory) for the

first five symmetric mode shapes.

6.2. DERIVATION OF EQUATIONS OF MOTION INCIUDING VISCOUS DAIPTING :

In Fig.6.1, a typical differential element of length dz

- and width bﬁis taken from the flange of the thin-walled beam,

and the generalized forceg acting are shown. Assuming gmall
displacements ag in Ohaptef IV and summing the torques yields

one equation of motion:

7 azﬁ
3 3
Tz (.Ts+ To) = o "J% T, = FIP 73?5 : (6.1)

i i




FRONT VIEW

FIG. 6-1.STRAINED STATE OF A REAM ELEMENT




'whera'TE 1is the Saint Vonant torgque given by IDq.(2.2a), T, the
warping torque glven by Iq.(4.8), ﬂt the torglonal damping con-

atant and, Te the external torque per unit length of the beam.

Summing moments about an axis normal to Fig.6.1 yields
thé second equation of motion:
o% gp

Sl 0 - b= I.— o
- Q aby ¢ £ atz (6.2)

where M is the bending moment in the top flange given by Eq.(4.4),
Q the shear force given by Eq.(4.7), g the external vigcous force
Per unit length acting along the sides of the flanges, of width

b, to oppose warping.

Further, let us define a warping demping constaﬁt‘ﬁw by:

B, oz
. : ct5
‘ i _bgf —-——at (6.3)

. - Substituting Eqs.(2.2a), (4.8), (4.4), (4.7) and (6.3)
in Eqs.(6.1) and (6.2) we obtain:

a2 g : 2
e € ., K'Afeh(% -g—g = -g—ﬂ’-)+ 1= I L B, —2% (6.4)
| . Z .

a aza - o] atz
and
o9 Ve 82 92
L, E¥a k' a e ¥ _y) - o1 # e | (6.5)
i fatz i Eaz gl) fat Wa.t

o iy

It is necessary to obtain solutions to the differential
Equations (6.4) and (6.5) which also satisfy the boundary condi-

tiong of the particular problem being considered. This may &¢

e — e = - e Sl 3 S dgs
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achieved by assuming solutions in the form:

_ #(zr ) = 3 B, () B (%) - (6.6)
e F ; n
(z, t) = £ 2 (z) ¢ (%) “e.7)
Wz, - St z) &,

Where‘aﬁ(z) and zgn(z) are the mode shapes obtained from golv-
ing‘the free,'undamped vibration problem. Ths moda shhpa fun-
ot}one are given in section 4.7 of Chapter IV for the silx cases
arising frbm combinations of pimply supported, clampad and fres
ends. This procedure will be used below to investigate the case

when both ends are simply supported.

6.3. SOLUTION FOR THE CASE OF A SIMPLY SUPPORTED BEAJ:

Consider a beam of length L having its ends z=0 and z=L
both simply supported. From Eq.(4.65) of Chapter IV, the fre—

quencieslof vibration for this case are given in an alternative

form ag:
s 1/2
+ =0
2 = b - (b*~ 453
Dy = - ‘ (6.8)
where 4
: eI \WI. T ;
; a = (6.9)
K A.G
&, 250 ?Ifh
Wow o PT L4+ nfn L(—:—-LE) —51—1 <) (6.10)
K ApG
BI.C
T = n®1%1%0_+ n*nt(SE8 4 5o ) (6.11)
S ] K w

Ag
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From Eqs.(4.67) and (4.68) of Chapter IV, the mode

shapes for this case are given by:

Fp(2) = A otn A0 (6.12) !
?*f;ﬁcéz l'@;n(z) = Bn cog E%ﬂ ‘ (6.13) -ﬂ

ﬁhere An and Bn are arbitrary amplitudeg.

Let the external torque per unit length be expressed

ag: i
T (z, t) = iz 2 (t) sin 11%5 (6.14)
.e n=1 =

Where Fourier coefficients are determined from

- :
Z(t) = § [ 1 (2,t) sin BEZ g (6.15)
o} )

The solution of the coupled differential Egs.(6.4) and ‘
(6.5) can progress in several ways. We will begin by first un-
coupling them. Differentiating Bq.(6.4) with respect to z,
solving Hq.(6.4) for 3%°/0z, and its higher derivatives, and
substituting into Eq.(6.5) yields a Tourth order uncoupled equa-

tion for g given by :

; 4 2 4
EI.C RE *d B PIpr +EgPIf J PIh =g
K A "l a,% g’ AgG X A 2 372842

2
%y 4 BLePy ﬁvcs + Ah 3% g
8 9,2 | K A St L S 2 35204

- GO
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L L o [re ered o oDt ] 22
—;——LI + +
K A0 PR ™ AG KA P ? P K AG| 0%
> : 82 88

= Ay
+ﬂti=T+ 1 |- Bl —2 +P1 __Q+B—§-J (6.16)‘

ot S K e T 352 T 342 LT

Similarly, eliminating @ between Egs.(6.4) and (6.5)
yields the uncoupled equation for 9/ given by:

. . e
B0 a%ep R A S ol
"ot Ear K4 2 | 972042

f z

3%, | BI B 0 2] 88
- G0 ag’.. ‘fﬁt + -8 +Eﬂ >
8 By A6 B 8 9220t

+ —
K A8 Py K A& K AG| 83t°

4 3
, fnte do lers 1 a} Py

a
Tq
3z

(6.17)

ol

o dpag Tl o 3
Jons 2 22
.P K A G| Ot

ot

As expected, the left-hand sides of Eqs.(6.16) end (6.17) are
identical.

~ Substituting Eqs.(6.6), (6.7), (6.12), (6.13) and (6.14)
into Eqe.(6.16) and (6.17) results in:
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44 nZn®
[.ﬁ_ ‘E*“il 3 ..__aj P (5)

{pt 2"2 Elst+_u+i)§ F, (+)

e K48 K A A
1.z I 1n2
{()I +—?_EG L2 zief %LA ok :h ),% roy
K Ap £ £

s, sl e ST
--l-_(e—‘f-i—i'*i'ﬁﬁu)]i‘nft)'l'm F (%)
: 'KAfG KAfG KAfG

' n®ng1 B e Xt it .
=+ =——0)T (¢) + 2 G (1) + =L T (+) (6.18)
K 4G5 K A . EAG -

o BB
—z— —|-I—§-+EG)+——-—2-—— G, (%)

| 2.2 BI,B s
+ at,,_g__g_(_'_f__t +-£— )} G (%)
oliee 4 KAf ‘

1852 L HLLT, c€1 1n? [ ..
{PI+—T—H+ e S P:h) 6, (+)

A G 1° KAG K.Ar

2 - ;
* (_iii +_,_E_E) CLE O TR P T G T al) (6:19)
: Af(,‘. _AfG- K AfG 2L \




where dots denote differentiations with respect to time.
Eqs.(6.18) and (6.19) contain an exoiting torsional function
't;n(t) which can be of any form.

6.4. RESPONSE TO A UNIFORMLY DISTRIBUTED TORSIONAL FORCING

FUNCTION SINUSOIDAL IN TIME:

For purposes of detailed numerical results, let Te(z,t)
be ‘

B ‘ T (z,t) = T sinedt (6.20) -

where To is a congtant and «®the torsional excitation frequeney.
.Then, from Eq.(6.186) it follows that:

AT
“E'n(t) = ;;2 pift ¢atzm = 153,85, bs (6.21)

Agsuming a golution in the form

F (%) = A siz_zm; + B cosdt (6.22)

Substituting Eqs.(6.21) and (6.22) into Eq.(6.18), and
& equating coefficlents of ginwit and cog@t ylelds

o 00 © O 01get]

T 5—= (6.23)
nmk At Ky * Kop)

5t {Klnawug - 1{21‘1 [x Afg+(n2n2/L3 JEL .~ P11 a]?f :
& wn KA (K + Ky)

(6.24)




2= S
% ﬁ,z_Lf oot : , (6.25)
K A6 . : ‘
2 2n 2 2 2
n“n*wI n*n G S
Ron= Je9B, (1+ ——L)+c8 == &
22 {-* R pE R R
3 r
AN -
- - ( ﬁtIf+ BWI )} (6.26)
K 4,6 P
; _Similarly, agsuming a solution :‘f;‘,,
Gﬁ(t) = C, sinud + D, cosdt / (6.27)

184

44 B2
noN; EIIG‘ n~n~GC
=gl (2 +80 ) + ——8

£

T

. 2 ; 2
~lex +*ﬁ?ﬁw = n2(3~€1n1f + E$€—f£ + fEﬁE:; o8
P x AG R AG K 4, 2

and substituting Eq.(6.21) ana (6.27) into Eq.(6.19) yields:

2Th e R BB :
o = —,—]—iﬁﬂ" D = 2 (6.28)
T AT R TV .

where K) and K, are defined by Egs.(6.25) and (6.26).

Of course, Egqs.(6.22) and (6.27) may be replaced in a

more convenient phase angle form ag:
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Po(8) = Vo7 + B 6in(s % + avo ten B /4 ) (6.29)
G, (%) = 'cﬁ + D2 cos(w % + are tan bn/cn) (6.30)

Purther we note that Dn/cn- - Bn/An

5. EREE AND FORCED VIBRATIONS OF A GLAS3TQ BiAM SIMPLY SUPPORTED
AL BT TD3 ¢

For purposes of comparing with the preceding results, let
us now summariéelthe classic solution. In the case of the clasaic
beam based on Timoghenko torsion theory, the effects of longitudi=
nal inertim and ghear deformation are neglected and by putting
1/K'= 0 and PI,= 0 in Eq.(6.16) we obtain:

4 4 V\
0%y : 02
EU" -—I - GOB :5 '1"f:'Ip _t-g ﬂ‘b %% !'f.'e (5-51)

Considering first, free vibrations with . no damping, the differen-

tigl equation becomes

oy, 2 2 _ |
EC_ a_zg = GC_ . - PIP e ) (6.32)

which was treated in detail by Gere (32).

The solution to this equation in terms of circular and
hyperbolic functions is well known (32). It can be seen that &
function which satisfies the boundary conditions of a beam aim-
Ply supported at both ends is given by:

F= 3 F, (%) sin Bp2 ‘ (5.33)

n=l
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Substituting Eq.(6.33) into Eq.(6.32) and recognizing
that the resulting equation must be satisfied for all values of
% within O < z < L glves

2 2 n2mnEQ

01, F a(F) + nx.g ( = T +6C,) F () =0 (6.54) ‘

From Eq.(6.34), the well known (32) frequency equation is found
to be:

=
22E 2 ‘
iy n*n~EC_+ L~GC
p. = bE w2 8 (6.365)
n yED L i ~

D

For the steady-state solution of the forced, damped vib-

ration problem as before, assume

# = IPF (t)sini%Z (6.36)
n=1 L
- nng
Te(z,t) = z Z (t) sin =— (6.37)
n=1 L

where, from Eq.(6.15)
TG

Cal) s sinot, n=1,8,8:: ) (6.38)
Substituting Eqs.(6.36), (6.37) ana (6.38) into Eq.(6.31) yields
2% |n2n2 : - 4T

o =0

= [ = EC_+ GGJ Bp(8)+ P (6)+ OLF (8) = aw sin o (6.39)
having a steady-state solution

Fn(t) = E, sindt + H cosdt

- Substituting Eq.(6.40) into Eq.(6.39), we obtain

e e
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| (a7 /nn)%}ngng/Lg)[qn?nz/IZ)Ec + GC !-092(’I Tf e
"n {(nznz/zz)[(nanz/x.a)m + 60_[-8 px} + (89) ;

- (ar ﬁf*9/n1t)

H = (6.42)
B (g nz/Ilth(nBﬁB/L‘?)EO + 60 ]-as?.ﬂ L0 0 24 ( Py )
or , ; vl
; 4T 1/2 : 3
F,(t) = #{?gli(pﬁmé)zﬂﬁﬁ)a} gtaws o) (6.43)
where - B 09 o
ten 0 = ——-———g——é— (6.44) "
PIp(pn—as ) ;

6.6. DISCUSSION OF NUMERICAL RESULTS:

The sdlutiong obéained were programmed on IHM-1130 Com-—
buter at Andhra University, Waltair, to allow a numerical atud&
of the effects of the parameters involved. Some of the interes-
ting results obtained are shown in Figs.6.2 to 6.8. In Figs.6: 2

to 6.8, only the response of the firgt mode shape ig ooneidered.

The velues of the conmstants umed for these figures are as followa!
n=1; = 0.00884532(1bs/in%); E = 30 x 10° (1v8/10%);
G= 12 x 106(1b3/in2); Ap= 20.7584(12’12“)_; Ig= 469.532(in%);
I= 17245.7(1n%); G = 27.3252(1n%); C_= 5,02,251(1n%);
'L = 760(in) and T,= 1.0,

which correspond to a wide-flanged gteel I-bean, 36 WF 230, with
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width of the flanges b = 16.475(in), height between the o
lines of the flanges h = 35.88(in), thickness of the

enter

web t =0.765
(in) and thickness of the flanges .= 1.26(in), ;

t;-
Fig.e;z 1s the plot of torsional amplitude againgt fore-

eing function frequency with varying values of torsional damping

for the classical beam based on Timoshenko torsion
3\

Pigr.6.3,

theory.

6.4 and 6.5 are the Plots of amplitude versus -
frequency including the effects of longitudinel inertia ang ghear
deformation. ' For each set of the curves, the value of ﬁ', the

damping associated with warping angle, ig held constant while the

values of torsional damping By are varied.

It can be observea that the general shapes of the Plotg
dao not differ at all from that of Fig.6.2, i.e., shear deforma-

tion and longitudinal inertia effects do not radiecally alter the °

form of the amplitudaefrequency ocurves. As expected, increaging 3

the damping associated with warping angle has the effect of low-
ering the amplitudes.

Figs.6.6, 6.7 and 6.8 are algo amplitude frequency plotsg
including longitudinal inertia and ghear deformation effects,

but for each get of curves 5t is held constant while ﬁw is varied

Again, the general form of the curves is not
unlike that for the classical beam.

from zero to 105,

However, comparing Figg.6.6,
6.4 and 6.5, it will be readily seen
that the variation of demping associated with angle of twist Fys

6.7 and 6.8 with Figs.6.3,

hag a much stronger influence on the curves than the variation






PRESENT ANALYSIS

qrv L ol

| |
2 6
g i «@ (RAD/SEC)

LEY R

Fig.e.2. Present analysis.




1 |
12 !6"‘"
s (RAD/SEC)




| /
j2 16

6O (Rad./sec.)

Fig.e.5. Present analysfs'.:"'




I | Er e
B@(Rad/ﬁe:) o

¢.6. Present analysis.




5 s &
wo.(Rad./sec.)

f_gg s 7. Present Anaiysis.




is.

w(ﬂadfséc)

N

2

=]
. Present analys

¥,

.58

Fi




196

{99

)
3

g1-0T X 06184°GT ‘ g7-0F * 4€82¥°8 080°GTG“4 00S°3TS°6T 6

47-0T ¥ 0££06°9¢ g-0T T 28282°8 070" 629°g 009°G08* TT 4

ﬂ.Tb._n X 07992°3T .n.wlo._” X GTL68° ¥ 044 888°‘S 0¥¥%°G30°9 g

o.mlo.m X $EPLV°6 ..O.HIOﬂ X G9968°G omm.wmmw.n 04L6°TLT 3 e

b...Oﬁ X 088V T blo.n X p6482° T T64L° G238 TT2°9%28 T

8TeLTEUy jUueseIy meeg OTBEBT) STSATBUY juesSedgy  weeg OTBEBTYH u g
4 4 4 ~I2quUy OPOK

hoﬁw.ndo.ﬂ_m TeIng sy

opPnyTTANY T8O WNETXER -

BUOTJIeA a0 BopngIT

V- ETEV. L




197

of damping associated with warping angle Py- Therefore, inclu-
ding the effects of longitudinal inertia and shear deformation,
the torsional velocity damping is more significant than the warp-
ing-velocity damping.

Further, to congider the effects on higher modes, light
, torsional damping, (B;=200, B_=0) will be applied to & beem of
large depth to length ratio. Keeping the same physical para-
meters éslabove, except letting I = 100 (in) to emphasize the
shear deformation effects, the 'maximum total torsional dnﬁli-
tude' response may be computed,. This is the maximum torsional
amplitude obtained due to superposition of the respongesg of all
modes when the geparate natural frequencies are guccessively
ex cited. Maximum total torsional amplitudes are given in
Table 6.1, for the first nine gymmetric mode shapes of the sim-
Ply supported beam. From Table 6.1, it is observed that as the
mode number n increases the difference between the natural fre-
quencies of the classicel beam and, thoge obtained frbm the pre-
sent analysis including the effects of lowgitudinal inertis and
shear deformation, algo increages. As shown in Chapters IV and
V, the natural frequenoies obtained by including the effacts of
longitudinal inertia and shear deformation are lower than thoge
for the classic beam. However, the amplitudes obtained inelud—
ing longitudinal inertia and shear deformation are larger than

thoge for the classic beam.
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CHAPTER - VII

TORSTONAL WAVE PROPAGATION IN ORTHOTROPIC THIN-WALLED BEAMS OF

OPEN SECTION INCLUDING THE EFFECTS OF LONGITUDINAL INERTIA AND
SHEAR DEFORMATION, -

7.1 INTRODUCTION:

In the previous Chapters, free and forced torsional vib—
rations of short thin-walled beams of open gection inecluding the
effects of longitudinal inertis and shear deformation are analy-
zed both by exact and approximate methods. The pregent Chapter
deals with the important problem of torsional wave propagation
in orthotropic thin-walled beams of open section including the

second order effects.

Though there exists a good amount of work on the analy-
sis of flexural wave propagation, comparable torsional wave
analysis was virtually neglected and very few papers on this topie
have been published. The reagon is the fact that Coulomb theory
gives the game first-mode results as the exact theory. The avai-
lable information is almost limited to the circular cylindrical

bars. Thus, there exists a lack of gsatisfactory approximate and

exact théories for torsional wave propagation in non-circular bars,

especially those used dn structural applications such ag thin-

walled beams of open section.

* A paper by the author baged on the results of thig Chapter is
accepted for publication in the Journal of the Aeronautical
Society of India. See Ref.( 59?.

b
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An inadequacy of 3t.Venant's elasaical tor-ion theory
for short wave lengths was hinted at by Love ( 74), who sugges-
ted a correction for the longitudinal inertia associated with
torsional deflection. Vlasov (/©7) algo introduced the effect
of longitudinal inertia in his torgional analygsis of thin-walled
beams. However, both the elementary theory and Love'sror
Vlasov's approximation have the same defects as do their counter—
parts in longitudinal wave-propagation theorj. The dynamic equa-
-tion used by Gere (32) in his torsion analysis was esgentially
that previously derived by Timoshenko (98) and included the ef-
fect of warping of the cross section. Thesge equationg ars found-
to lead to physically absurd results for ghort wavelengths.,
Aggarwal and Cranch ( 4 ) presented a strength of materials
theory including the effects of warping of the crossg section,
longitudinal inertia and shear deformation. This theory was ‘
found to lead to theoretically satisfactory results for the first
mode of transmission over a wavelength gpectrum which included
moderately short wavelengths, and that it agreed with previous
approximationg for large wavelengths. The group velocity for
thé gecond mode was found to increase monotoﬁically from zero
for the longest waves to the bar velocity for very short wave-
lengths. This was in agreement in form with the higher modes
of the exact theory for circular cylindrical bars (8825},

Mumbpa
All the above work, and a heat of other invegtigations
involving torgional wave propagation phenomena in thin-walled

beams, concerns igotropic materials. Anigotropic materials have




200 e

not been approached to the best of author's knowledge. As is L
well known, anisotropy of the material introducea congiderable

complications in the computational part of the solutlonm.

The present Chapter therefore, aims at investigating
the problem of toraional‘wave propagagion in orthotropic thin-
walled beamg of open éection including the effects of longitu-
dinal inertia and shear deformation, from the strength of mate~
rials approach. This approach is attractive for its physical
directness. More specifically, the interest is to find what
values of the wave frequency result from tﬁe elementary theory
established for the anigotropic analog of the igotropic thin-
walled beams of open section including the effects of longitu- :
dinal inertia énd shear deformation. To this end, the equation
of motion for free torsional vibrations of thin-walled beams of
open gection of orthotropic material including the second order
effects is established, analogous to that for igotropic material.
It is ghown herein that, for some anigotropie materiais, the '
correctionsg due to longitudinal inertia and ghear deformation
may be of one order of magnitude greater than the correction
in the isotropic case. Graphs are also given for the phage
- velocity versus inverse wavelength for various agpect ratiog of

beams of different materials.

7.2. ANATYSIS AND EXAMPLES:

For definiteness and simplicity, let us take the mate- %
rial of the thin-walled open section beam to be -orthotropic,
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with one axis of elastic symmetry, g-axia, directed along the axis
of the beam.

As 1s well known the fundamental eéuation of elementary
theory of flange-bending retains its velidity for anisotropic
materials of the most general type, provided‘the igotropic ™
Young's modulus is replaced_by the modulus Ezz for extention-

compression along the axis of the bar.

In gymbols,

Era 9
M= I:‘,zz If T | (7.1)

analagous to the Eq.(4.4) for the igotropic beams.

Now, in the derivation,in gtrength of materials, of the
formula for the maximum ghear stress in flange=bending,
Qs :
T, _(max) = - —2 : (7.2)
BX
It
f'w
no specific elastic properties of the material besides certain,
gymmetric conditions, are postulated. This equation, therafore,
is certainly valid (in the same sense of strength of materials)
for the elastic symmetriceg involwved in the orthot:opic thin-
walled open section beam characterized earlier. For such a

beam, with sz a8 the pertinent shear modulus,

‘sz e (7.3)
80 that

1
=~ =KAL €sh ; ' (7.4)
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where esh is the shear gtrain at the center of the flange, x=0,
given by

Cn = (B2 _o) - s
re
In Eq.(7.2) all others being previously defined, S, stands for
the statical moment with respect to neutral axis. In Eq.(7.4)
i
K' is the shear coefficient which depends upon the ghape of the

cross section and ig given by

Xl L | (7.6)

_ ' There 1s no difference between Egs.(7.1) anda (7.4) and
the corresponding equetions in the isotropic case i.e., Eqs.(4.4)
anﬁ (4.7) of Chapter IV, except for the modulii E,, end G _ stan-
ding for B and 6. One can therefore avoid all the trensforma-
tion and proceed directly to ﬁeriVe the frequency equation.

Following the procedure in Chapter IV, the equations of
motion can be now written for torgional vibrations of orthotropic

thin-walled beams of open section ag:

82 ' h aE
- szcs -a;-g + K Af(}th(-é az —Z) = FIP 3—1-;2 = (7.7)
an ] > -ag _?3&” P 82 ( )
AK Afezx(ﬁ A% ~p) + Epale 52 s Ly Ezgu 7.8

Eliminating;ﬂ'between ‘Eqs.(7.7) and (7. a) a single equa-
tionAﬁ may be obtained as:




; - 2
S e o 0B .1 1 G Tt 01 oA
%z I8 g g L.g__r_a&Lf+L?_£+ i °2ﬁ2
e B K AG K A, 2 0z~ 9
X zZX

2 3 ¥ 1 4
S EL% + 0Pz .2_% +-ff-2—i : (7.9)
P 3 Pat® x A6, 0%

For a wave~form polution in long beams, congider a sinu-

soldal wave,

: 16, (g-C_% :
e i (7.10)

propagating along the beam. In Eq.(7.10), 6 is the wave num-

ber = 2mn/A , /N being the wavelength, Cp the phase velocity for
torgional waves, and t is the time.

Substituting ¢ from Bq.(7.10) into Eq.(7.9), the fre-

quency equation for torsional waves is obtained as

Pr, ¢, 4 [P, E P10 TR G .2
—é(a-:-a-lj;—(iwif(f+-r+-;ls’i (a2)

K

2
Ip sz T 51

A o
l:_g_ﬁ(._Z) (CB + fh) _&ﬂ] (7.11)
K
where C, = (sz/F));/E is the shear wave velocity. Eq.(7.11)
determines the phage velocities of the torsional wave propage.-

tion in an orthotropic thin-walled open gection beam.

- Two cases of interest can be deduced from Eq.(7.11) as
follows:
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)
(1) Neglecting shear deformation, by latting K'- e , the
frequency Eq.(7.11) reduces to:

B
Bt R0, L)

(7.12)
2 I+ onf Ly (u/A )

Bq.(7.12) therefore is the frequency equation which includes the
warping and longitudinal inertis effects of the cross section.

(2) Neglecting longitudinal inertie and shear deformation,

r
by letting (I,=0, K= =, the frequency equation (7.11) redu-
ces to: ;

(gg)z = IL [cs+ 2n? If(Ezz/sz)(h/A)z] (7.13)
P

which is the frequency equation including the effect of warping
only and represents the Timoghenko tortion theory ( 32).

- Returning now to the general Eq.(7.11) which includes

both the second order effects, it may written in an alternative
form ag:

(7.14)

. 33 TE
where ) . | :
‘ Gy = E,, /6, | ; (Z1b)
By = %p [ c .+ (1/2) K.Afhg ] (ri18)
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%o = OB/IP ('?fla)

Bal(r. 140 fivin ridetis o e moRes of weie Toananin
lion &5 e new mode can be explained to arise from the coupled
interéction of the torsional deformation with the bending effects
of ghear deformation and longitudinal inertia. The phase velo-
cities for the two modes are given by Eq.(7.14) as:

\ 5. 2 1/2 ;
; L s g s e
+ [33+53+"—‘;% &) } = 4%355 %%;2({1—\)2] (7.19)

where the minus sign is taken for the first mode.

Eq-(7.19) defines the phase velocity as a function of
the ghape of the cross section. At very large wave lengths the
regults for the lower mode obtained from Eq.(7.19) will agree
- with those from previous theories. This is obvious because
the deformation amssociated with long wave lengths is primarily
that of rotation of the ecrogs section with assentiaily no warp-
ing, no ghear deformation and hence no dispersion. The impro-
ved theory due to Aggarwal and Cranch (Zy ) displays finite
wave velocity 02 Vﬁs for very short wavelengths as against the
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infinite wave veloolties predicted by Timoshenko torsion theory

end low wave velocities predicted by Saint-Venant torsion theory,

From Eq.(7.16) which defines Pz 1t may be observed
that for ghort wave lengths, the torsional stiffnegs effect ig
very ﬂﬁall and the sghear distortion of the flanges contributeg
more. The present analysis gives satisfactory results for wave
lengths /\ > t_ for the first mode and this coincides in the
" second mode ﬁith the form of the exact theory for citeular cylin-
drical bars. The range of applicability of the firgt mode,
ey tyr glves a wave length spectrum which includes moderately
short waveg and high frequencies, and as guch covers a range of
Practical interest. Ag an example, for the beam for which
b/h = 0.75, te/h = 0.050 and t/h = 0.040 the theory is valid
for wave lengths h/A < 2s5.

Despite the fact that Eq.(?;IQJ has a form identical
with thet given by Aggarwal and Cranch ( 4 ) for isotropic beams,
there is a bagic difference between the two equationg. It con-
8ists in that, for isotropie bodieg, the value of poisson's
ratio ranges (at least in principle) from 0O to 0.5, so that the
velue of B/G in Eq.(7.19) falls between 2 and 3. On the other
hand for anigotropic materials the values of Ezz/sz may be one
~and pogsibly even two orders of magnitude higher. So much 80, .
both the corrections due +o shear deformation, and the correc-
tions for longitudinal inertia and shear deformation together,
may become several times greater for anigotropic beams than they

are for isotropic beams.-

\

-
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Table 7.1. Valueg of &5 for varioug materialg.

. Material Xy = Ezz/sz
Isotropy 2.6
Orthotropy II ' 13.9
Orthotropy I 4 174,
Transverse Isotropy 35.0

(Average of the range 20 - 50)

The values of a5(= Ezz/sz) for three types of anisotro-
ric materials considered in thig Chapter are given in Table 7.1.

For an igotropic material the value of « is taken ag 2.6.

*.3. RESULTS AND DISCUSSION:

Figs.7.1 to 7.8 ghow, the phase velocities for torsional
waves in four wide-flanged I-beams which cover the practical

range, having dimensions such as:

(1) Bh=0.25, %,/h=0.025, t,/h=0.020 (Figs.7.1 and 7.2)
(2) b/n=0.60, t,/h=0.040, t /h=0.025 (Figs.7.3 and 7.4)
(3) b/huo.'rs, t/0=0.050, t,/h=0.040 (Pigs.7.5 and 7.6)
(4) g/hzi.oo, t/8=0.10 , t,/h=0.050 (Fige.7.7 and 7.8)

Of isotropic and three types of anigotropic materials having val
of ug, 2.6 (isotropic), 13.9 (orthotropy II), 17.1 (orthotrépy I)
and 35.0 (transverse. isotropy). Figs.7.1, 7.3, 7.5 and 7.7 gives

the results corresponding to the firgt mode for various values of
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@y for the four beams.

In drawing the graphs, the valus of X was taken al_"
7%/12. The Phase velocities corresponding to the pecond mode
for all values of o, can be obgerved, from Figs.7.2, 7.4, 7.6
and 7.8 for the four beams congidered here, to decrease from

infinite values for the longest waves to the beam velocity for
the ghortest waves.

The results for phage velocities obtained from Timo-
shenko torsion theory (Eq.7.13), the theory including warping
end longitudinal inertia (Eq.7.12), and the theory including
warpi@g, longitudinal inertia and shear deformation (Eq.7.19) .
are compared in Fig.7.1 for beam (1) defined above, for ,the four
values of'&3 congidered in this work. In all casges the values

of the phage velocitiesg increase with inereasing valueg of Gy-

From Fig.7.1, it can be observed that, at lower wvalues
of /K , the phage velocities from Eq.(7.19); inecrease consi-
derably with increasing values of Eé‘ but differ only glightly
for different values of « at higher values of h/A . The va-
lues obtained from Eqs.(7.12) and (7.13) aiffer greatly at lower
velues of a5(= 2.6) but differ slightly for higher walues of G2
Because of the above, it can be seen, that the Percentage of ine
fluence of both longitudinal and shear deformation on the tor-
slonal wave propagation may increase drastically for increasing

values of &, i.e., Ezz/sz‘

For example, for beam (1), for h/A = 0.4 and @,= 2.6

(1sotropic) the percentage influence of both longitudinal inertis
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and shear deformation is, ﬁléﬁﬁ 18 percent and, that of longi-
tudinal inertia alone is, &= 4 percent. But these values
change drastically for anigotropic member and, for ingtance, for
h/A = 0.4 and &3 = 35.0 (transverse isotropy), the percentage
1nfq.uence of both longitudinal inertia and ghear deformation for
the first mode, is as high as @lsﬂﬁ 61 percent and that of longi-
tudinal inertia alone isg 51:5 4.7 percent. Hence, 1t can be con-
cluded that for some anigotropic materials, the corrections due
to longitudinal inertia and ghear deformation may be of one or-

der of magnitude greater than the corrections in the isotropie

casge.
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elagtic foundation including the effeéts of longitudinal iner-
tia and shear deformetion. The coupled differential equations
in angle of twist and warping angle governing the motion of

the short thin-walled beam in torgion are derived utilizing
Hamilton's principle. New frequency and normal mode equations
which include the effects of time-invarient axial compressive
load and elastic foundation are derived for various gimple end
conditiong. The effects of axial load and elagtic foundation,
in combination with the second order influences, on the tors-
ional frequencies and buckling loads are discussed for the case

of a gimply supported bean.

8.2. DERIVATION OF COUPLED EQUATIONS OF MOTION INCLUDING AXIAL
LOAD AND BLASTIC FOUNDATION

The strain energy v, dnm—to the Winkler-type elagtic

foundation ig given by:

U = U1+ Ugt U3+ U, j

Uy = & K0 an (8.1) 4
0 : :
! Utilizing Bgs.(4.12) and (8.1), the total strain energy |
U at any instant t, including the effect of Winkler-type elag- ]
tic foundation can be written ag: 4
o
<
=

L 2 ' 2
% f e (%) 4q EI, (=
(o] 8 aZ az

' - 2 ‘
tR KAfG(%—ag-?{‘) +Kt(25)2:[ de : (8.2)

Oz




/

220
The potential energy, W, due to the time-invariant ;

axial compressive load P is given by:

' T 5
W lf.—iﬁ(-gﬂ)gdz_f (8.3)
; oz

= = /
The total kinetic energy at time t is
L 2 : 2
me= b Pl er (M opig (2T (8.4)
‘\ 2 ol D gy oy

which ig same as Eq.(4.13).

If T4,U and W from Eqs.(8.4), (8.2) and (8.3) are sub-
stituted into Eq.(2.1), and variations taken, and after integ-
rating the first two terms by parts with respect to + and next

five terms with respect to Z, We obtain:

h
t

0“3H

[ (GG-—-E)—Q+KAGh(h—g —J‘ﬁ’)

25

Al ae o B,
~pr a1, 2 Ly
K@ f’Ip = % + 4R EL, e 2 I,

+

o K'Afe(% 2 —#))} Sav] dz dt
e

=
L g 1
+J‘((’IPEQ5¢+2€I£MM)) dz
Lo a0k 0t +
o !
1 h g
- (GO--EP-)—Q*?KAth(E -p) Y &
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et WL

Assuming that the values of ¢ andy are given at the
two fixed ingtants, the gecond integral vanishes. If the bou-
ndary conditions are such that the third integral also vanishes,

then we obtain the two coupled equations of motion ag:

e 2
csreary 10 R S5 a
{codav=h) o? + K AgGh (g o? ’5z £ Ke@- o1,

‘—and : e

i _ . '
3 ! sk od g
Elfgz—;f+KAfG(2 azd,v)_(’If-gﬁ—2 D

| 8.3. NATURAL BOUNDARY CONDITIONS :

 In deriving the coupled equations (8.6) and (8.7) from
(8.5) 1t was assumed that the expression

B e h o - 3 -
,:(GGH- -KE) _f_’f + K A_t‘Gh(E -af-'ir) ]59’ ,+ 2 EIfA —;:2 &2

vanishes at the ‘ends z=0 and z=L. This condition ig satisfied
if at the two ends,

’

= .

[(GG-—B)—Q+KAGh(h—Q-zp)J &8 = o (8.8)
and

22 5y = o (8.9)

3z :

Egs.(8.8) and (8.9) give the natural boundary oonditions for the e

finite bar. - Except for the cage of g free end, the boundary

conditiong for simply supported and fixed ends remain the same

as those given by Egs.(4.19) and (4.20).

'
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For the case of a ''free end'', the natural boundary

conditionsg for the present problem become:

33‘1_0 and (GC_- ——E)—g+KAGh(—ﬂ—E}))=O (8.10)

1 By

It can be observed that the difference between Eqs (8. 10)
and (4. 21) for the omse of the free end 1s due +o the Presence
of the axial compressive load, P, acting at the shear-center '

" (or centroid) of the bean.

8.¢:1¢ SINGLE EQUATION IN ANGIE OF TWIST:

Eliminating & between the coupled Equations (8.6) and

(8.7), a gingle equation of motion in angle of twist @ may be
obtained as:

EIC

-2 +EG~ _4%

X o TR A GA og

& E(’IDIf Cq PI (’Ifh ot g

- = AfGA 9% 342

PI 2
- (60_+ — it 2y 24 , (pr s+ ﬁ £ty 3%
AL A aF P Eas o
)
PI PI, 44 ‘
< g +E g= 0 : (8,11)
K A6 o™ .

Eq.(8.11) is the linear partial differential equation
of fourth order governing the torgional vibrations and atability
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of a fhin-walled beam resting on continuous elastic foundation.

8.4.1, ANALYSIS OF VARIQUS TERMS:

N

(1) Tetting C_ = P:tf = 0 and K'= =, Eq.(8.11) reduces to:

‘ Pl :
(ce _—}.{5) o PI S tg =0 (8.12)

< Fae g

BEq.(8.12) repregents the ~governing differential equation
of motion for the torsional vibrations and stability of a beam
resting on continuous elastic foundation, based on Saint Venant
torsion theory and does not included the effects of warping,
longitudinel inertia and shear deformation.

1
(11) t¢ C, = 0 and K = =, then Eq.(8.11) becomes:

P 7 ) 'A >
(ac _.EE) P, ﬂfh pr_ 2% # =0 (8.13)

l\'.'

g Tk Eat?- U 5Bl

/

Eq.(8.13) represents the equation of motion based on
Love's torsion theory and includes the effect of longitudinal

inertia.

(111) If I, = 0 and K'= =, Bq.(8.11) reduces to!

4, S PL 2
o7g L ad DS dkers ;
BC o (GrcH ' )a—zg + K@+ PIp T 0 (8.14).

Eq.(8.14) is the gnverning differontinl. oquation of mo-
tion based on Timoghenko torsion theory which includes the ef-
feot of warping and neglects longitudinal inertia and ghear de-

formation. It must be recalled that this equation ig game as
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-

Eq.(2.6) which is completely solved in Chapter II for various

end conditions of the beam.

(iv) If K - ®, Bq.(8.11) becomes:
q

‘

] 2 _ : '
EG a%y 3 PIfh aéﬁ e EEE) EEQ.+ K. g + PI EEQ i
W 624 2 azzatz 8 A azz + P atE
(8.18)

Eq.(8.15) represents the governing differential equation
of motion including the effects of warping and longitudinal in-
ertia but neglecting the effect of shear deformation.

(v) If PI, =0, Eq.(8.11) reduces to:

EI.C BL EI 4, E PI I 4
P$i+nc— }a 20
A

2.2
K Ag g AgGA| Oz K Agl B~ ot
BI K, * PL 524 - 2
- (cCc_+ u f) g - PLP a_g +Kf =0 (8.16)
‘ g KAfG 3y, %

Eq.(8.16) is the squation of motion including the effects

of warping and shear deformation but neglecting the effect of lon-
gitudinal inertia.

8.5, NON-DIMENSIONATIZATION AND GENERAL SOLUTION :

Eliminating @ in Eqs.(8.6) and (8.7) we obtain the com-
Plete differential equation in warping angle % ag!
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B PL eI, | ot
[E‘“*E"“&J]?ﬁ |

Ay L AgGA

K A0 x 1 2 8% 842

= (Gca+-2$153 3 -EE) asz + (PI +._T_IE&) E;E

K AIG K qu
K AfG ot
Substituting Eqs.(4.30) 4o (4.32) and omitting the factor
elP* £oe.(s.6), (8.7), 18.11) and (8.17) ara weduced tos
i 1 e = ;
F(x’?-aamj g + (02 4V _ (a1m)P = o (8.18)
-t 2 - Lot
% - (- 82207 + (u/en) g = o _ (8.19)

i _ ; -1 -
L= a®)4 197" [ 2202+ (1 22,242) 0212 a?)]g

= (2% 49®) (1-3%22) 5 = o (8.20)

i " : _ i ) b - oy
[s®(k%- AB)+ 1] zp“+ [22a®a®+ 22(1- \25%a2)4 o2( 22_ 4 )] o

= (3P 49%) (123222 % - o (8.21)

where primes denote differentiation with respect to 2.

The general solutions of Eqs.(8.20) and (8.21) oan be found
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g = 1 ¢0sh a;Z+ Boginh @37 + Byoos Bz + B4sin B2

(8.22)

= 1sinh gl + 13200331 a5z + Bssin Bsz + Bécoa ﬁ / (8.23)
where

G

1
By ﬁ[gz(xz_ P 1172{ rx a®a®+8 ,\ 8% (A “-

1/2 1/
f ZaPa®+ 22 (1- %2a232). 42032 4f)1 +4(>?- 4?2

(8. 4)
and

- {[ﬁ’?azmau- NuRe®)- af (R 498)]%h 4( . wz)} <

[?\Baga9+£.\.’3 (1- XBaRa®) + g% (N2_ 492 I

18 asgumed,

In cage

: : 1/2
{l_)\aaaa2+ag(1- AZa2a2)- o2( A2 4y 2)]2+ 40020 4 2)}

['%2&2:12*-&2(1- Nafa®)e o® (22 ;Yz)]

we write

L : . it 4 i/ 1/9;
I:E\Eazdz-*i\z(l-)\gszdz)- 8% (N2 4}23)] + 4( X2, 492J

=1ccé

(8.25)
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Then Eqs.(8.22) and (8.23) are replaced by
g o= B, 00s aéﬂ + iBosin aéz + Byoos fyZ + Bygin #BZL (8,28)
% = 1Byetn az3 + Byoos w2 + Bisin ByZ + Byoos g2 (8.27)

Solutions of Eqs.(8.22) and (8.23) or (8.26) ang (8.27)
are naturally the solutions of the original coupled equations
(8.6) ana (8.7).

Only one half of the constants in Eqs.(8.22) and (8.23)

are independent. They are related by Eqs.(8.6) and (8.7) ag fol-
lowa:

B, = ﬁ—i‘; [1 8% (af +»%a2) VJ"Bl' (8.28)
B, = La [1-—52(a +2%4?) ]B (5.29)
B, Lo ﬁ; E+ azfpzs; »2a®) ]B,;. (8.30)
B, = ﬁn%; [1+ o2 (82 - X%a®) I B, ' (e.ai)

or

h ,
m;{ag —E(Kz-&?) +1:[+ 52()\9 4)’2)} 1 (8.32)

' ho [ g
Be"‘ 250:3 %m

: n,o Jg2 [ |
B, p e {ﬁs 8% (K% 42) 4+ 4 ;[- s 492)}33 (8.34)

82(K2- 12) 4 4 l+ SEESE L 2)} B, (8.33)

Shuey
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B; a'ﬁ’ﬁiﬂg ﬁ§ [.2(;{2-52)1- 1]- 32(')\2;- 47%) B, (8.38)

8.6. FREQUENCY OR BUCKLING LOAD EQUATIONS AND MODAL FUNCTIONS:

In gection 8.3, natural boundary conditions for the Dpre-
sent problem are disoussed. Dy ocombining thess sonditions in paira,
many types of gingle-span beams can bae analyzed. In terms of non-
dimensional parameters, the boundary conditions for a ''free end'!

can be written ag:

2p =0, [32(112;/_\3) + 1] g (2L/m)2 = 0 (8.36)

The application of appropriate boundary conditions (4.56),
(4.57) enda (8.38) and, relations of integration constants (8.28)
to (8.35) to Eqs.(8.22) and (8.23) yields for each type of beam a
get of four constants B1 to B4 with or without primes. In order
that solutions other than zero may exist the determinant of khe
ocoeffioclents of B.s must be equal to mero. Thim leads to the fre-
quency equations in each case and the roots of these frequency or
buckling load equationg, Ag» 1 =1,8,3,...n, or élcr, give the
elgen values of the problem. The corresponding modal functions,
51 and i%‘oan be obtained accordingly.

8.8,1. SIMPLY SUPPORTHD BEAM:

The boundary conditions for a beam gimply supported at both
ends are: i

— — ' -
=% =0 at =~ Z2'=0
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alt %ﬁ =0 at Z =1

For the boundary conditions at Z = 0, Eqs.(8.22) and
(8.23) give:

By + B, = 0 (8.37)

ag [52(1{2;@2) +1] £ PR 4)?2)% B,

»

| e {Bg [92(K2~A2)+ 1]- 2( 2. 4)’2)} B, = O (8.38)
Since the secular determinant, 13.,
[ az(Kg-éxz) + 1 ] £ a§+ Bg) £ 0} Hi-w

therefore it follows that B, = By= 0. (8.39)

For the second pair of conditions at 2 = 1, Egs.(8.22)
and (8.23) give:

By sinh ag+ By sin p,= 0 (8.40) !
and \

{ag [aa(rca-a’ah 1]+ a2 ()2 492)} B, sinh «

T s v
Saria. L

3
e ﬁ§ lf’a(iczuaz)-r 1_]-- a2 ( 22, 43’2)§ Bysin B,= 0 (5.41)

For a non-trivial solution, the gecular determinant mugt

vanish. This gives the characterestic equation:

[sz(KQ-Agh 1] (a§ + ﬁg) sinh @y gin By = 0 (8.42)
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~ 8ince Eungs-Ag) +1 j (ag + ﬂ:) # 0

and |
4 aa # 0! | > ’ p

From Bq.(8.48) we have . Mrai g
ﬁa = NN, n = 1,8,39s00e (30

which leads to the main golution of the problem.
Letting bg = 0% in Eq.(8.24), the frequency equation in >\2 is

obtained ag:

aZiBod L 5By 4 B2 L”E+ a2+ Bzdz(xz_aa)],, 4 o202y 2}

+{:¢t41:4 [52(K2-A2)+ 1:1+ nEnECKz- ~R)+ 4 Y21+ nzﬂzag)}’ = 0
: (8.

This equation gives two real positive roots:

2 1 ; ‘ ‘
>\mn =l tep [1-1- n2n2{32+ as+ Ezdz(xz_aa)} + 4522y 2]

+(=1 )m [1+ nenziug-dznsada(l{a-az)j' 48202y 2] + Annp?

(8.

This frequency equation (8.45) in \Z, has an infinite

132>= 0 . (8.
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The modal functions are obtained from Eqs.(4.22) and
(4.23) with B'e glven by I'qs.(8.39) and (8.46). Thowe are given

ag!

ﬁmn = gin nnZz (8.47)
Pon = '5'5%5 ELE(Ke &%)+ 1] 2()\2 - 4¥%) }cos nng
; (8.48)

. where >\2mn being given by (8.45).

The second spectrum appears at higher frequencies, grea-

ter than the oritical frequency X\ o Blven by

: T
and is due to interaction between shear deformation and longi-

tudinal inertia. It ghould be mentioned here that for the range

of values of the dimensionless parameters covered in this chapter,
A ig less than}\

For the case, A > ) o? 1t is convenient to use Gy = 1a:;

&nd, the characterestic frequency equation (8.42) transforms to:

]
sin xy sin By = 0 (8.49)

‘Hence, in case there is an,y extengion from there on for
>\ beyond >\ 1e., N2 2(12)1, care should be taken to account :E'or

the frequencies of the second spectrum which can be obtained from
Eq.(8.49).

By putting _32= d2= 0, in Eq.(8.44), the equation for the
the frequency parameter e neglecting the effects of ghear defor- g
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. mation and longitudinal inertia, can be obtained as:
2 : : =
R o= n®r®(nPr®+ k2o A%) 4 42 (8.50).

which is the same as Eq.(2.47) derived in Chapter-IT utilizing
Timoshenko torsion theory.

8.68.2, PIXED-FIXED BRAM:

For a beam clamped at both ends, the boundary conditions
arg: I

and

Applying the above boundary conditions to the general
solutions, Eqs.(8.22) and (8.23), the frequency equation, for the
firat get ( A< A o) can be obtained as:

22
- (1= 6191) : '
2-2 cosh a, cos B, + ginh «, gin B, = 0 (8.51)
3 3 5 0 3 3 ;
1
where :
| 61 = a3/;s3 (8.82) ‘
and
BB )4 1] 22 v ?)
91 =

mgigz(Kg_ /\2)+ 1i+ B2(- )\2_ 47 2) (8.?3)

The frequency equation for the second set ( ) > )\c) is:




TS

2 2
(1+ 6292) :

2-2 ¢os a; cos B+ = sin a; gin B, = © (8.54)
2%
where '
3 [}

8y = o / By (8.55)

and .
: 5; [az(Kz- C\g)+ 1 ] = 2(}\2- 43 2) .
0, = = - : ; (8.56)
2 af |%(2- A%)+ 1 | - &2( A2- 23 2)

The modal functions for the first set are given by:

‘ W ; * i
517- D(cosh g% + 51’21 6 sinh .7 ~ cos BZ+") sin ESZ) (8.57)

3
»
lp= E(eosh u3z+/%;’g-; sinh a,%- cos ﬁ32+/1151.n Pa2) (8.88)

where

‘ = coph o, + cos B :

7" = : 3 < (8.59)

/u,: = cogh a3+ cos .B5 G
1 (1/5191)sinh as+ sin By ;

- The modal functions for the second met ara:
= ' | = 1 B
# = D(cos 0% = 8, 5 8, sin 0zZ - cos B 7+7, sin B,2) (8.61)

»
L L

U /- 2 { !
# = H(cos ag2 # oo, sin oz2 - cos Bsz +/, sin B,2) (8.62)_‘ '

where

cog a:é - cos 53

(8.63) |

I L
, 2 20p 8in gzt sin
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L
- cosh g + cos 53

(1/5292)8171 £5+ ain B,

W
il i (8.64)
Since the coefficients in @ and % of Bqs.(8.22) and
(8.23) are related, the coefficlents D and H, that appear in the
modalfunctions given above, are connected thrpugh any one of the
Bgs.(8.28) to (8.31) or (8.32) to (8.36).

8.6.3. BEAM PIXED AT ONE END AND STMPLY SUPPORTED AT THE OTHER:

. A With the end Z = 0, taken as clamped end, and with the
end 2 = 1 ag the gimply supported end, the boundary conditions

are:

='T{/= 0 at Z2 =0

=i

and

g=y=0 ot 2=1

]

The frequency equation obtained from applying the above
boundary condition to the general golutions, Eqs.(8.22) and (8.

for the firet set (A < )\c) is given by:
6,8, tanh s~ tan Py = 0 : (8.65

The frequency equation for the mecond set (A > M) st
% : ' ‘
8,8, tan ay + tan By = 0 (8.68]
The modal functions for the first set are given by:
@ = D(Cosh agZ-coth oy sinh a

5% - cos BzZ+cot Py sin Bﬁz) (8.67

»

-

L. 3
gf‘/= H(cosh a32+/—;—g— sinh a,Z-cos 1332'*'/“5 sin ﬁsz) e (8.68
11
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o el i where

/LL* s (Gisinh gt Ain ﬁa)
. _(1/91) cosh s+ cos By

(8.69)

The modal functions for the second get are:

]

. y ;
@ = D(cos aéz - 0ot ay sin @z% - cos BSZ + cot BB‘Sin Bsz) (8.70)

L

»
: = ' 7 '
. ¥ = H(cos s u'f;zw 8in a,7% - coas ﬁsz +7Z3 sin H3Z) (8.71)
272 :
E
; ~ where
]
- 5, sin o, - gin B
(1/92) 08 gzt cos B, _ .
8.6.4. CANTITEVER BEAM WITH ONE END FIXED AND FREE AT THE OTHER:
For a cantilever beam built in rigidly at the end Z = 0
80 that warping is completely Prevented, and with a free end at
_Z = 1, the boundary conditions are:
ﬁn?}’zo at 2 =0
and
»

)

TP A e LA S s

The frequency equation for the firet set, in this cage,
can be obtained ag:

(1+6%) (1- &f) - |
2 + ——;——- cosh a, cos Bs e sinh a, gin Bz = 0 (8.73) .
1 1 1




236 1

The frequency equation for the second set is given by:

(1+ 0%) (1+ &%) . .
2 +——e——g-— 08 aé cos Py - —-%-3—- sin a, sin f; = 0 (8.74)
- 8y s o ‘ ;

¢4
I

The modal functions for the first sel are:

- : ¥ *:
B = D(Cosh @yl ~ 80,7, sinh a,7 - cos ByZ+°l, sin FgZ) (8.75)

2
Y = H(cosh a32+ 5 gin h asz - cos 532 +/""4 gin 532) (8.76)
bl :
- where .
»  (1/5 ) spinh .~ sin P
75 . 1L ey Mm-S (8.77)
4 eicosh oy + cog !33 :
g (8, sinh o+ sin B,) \
i - My (8.78)
8. 4 (l/el)qosh agt 008 Py 3

The modal functions for the second sel are!

— w» i W 1
" ¢ = D(cos aéz+ 8,057  sin agd - cos BgZ+7g ain PyZ) (8.79)
i e
* ;
?'7 = H(cos _o:;,’Z -%—-g—- sin aéz - cos P2 +* ¢ sin B,2) (8.80)
i 2°2 |
_' where ;
] )
» (1/8,) gin a, = sin B
B - - . (s.81)
5 (2]

T g
1 _ 5 €08 g + cos iis

|} *
* 5aina-sin#55

e om R 3

[]
5 (1/92)008 ezt cos Ps

(8.82)
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8.6.5. CANTILEVER BEAM WITH ONE END SIMPLY SUPPORTED AND FREE AT
THE, OTHER:

For a cantilever beanm simply supported at the end 2 = 0

and free at 2 = 1, the boundary conditions are:

— Fd |
g!.-_-?;-.o at 2 = 0,
and

-

Y =0, [PP-2®) +1]d - (a3M)Pp= 0at z=1.

The frequency equation for the first set, in this ocase
becomes

t . s
8, tanh %z = 6 tan B, = 0 . . (8.83)

The frequency equation for the second set is given by:

3 1 : i '
62 ten oy + 8y tan By = 0 . - (8.84}

The modal functions for the first get are!

- 5, cos B _
fm b 8 4 @l + gin B2 (8.85)
cogh Un
- sin B,
e = . cosh a,Z + cog PzZ (8.86) |
4 sinh g :
The inodal functions for the second set can be obtained. ag:
= ) cos B 1
g =~ ...E.._._i_ﬁ sin a7 + gin Bsz (8.87)
cog g
- ..8in B : '
&=~ E——-—-?~ cos aéz + cos f;Z (s.88)
251n Ay J

I
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8-6.6. BEAM WINH FRER mipg:

In the cage of a'beam whigl

h 1s free at both ends, the
boundary conditiong are:

A
?

: 1 _l. = ¥
.m0y [ oBrBual)yy 1l - (L)Y = 0 at z = o,
and :
-t =t : - B
P =0, [52(K2-A2)+1J g-(L/n)p = odt g7 =1,
The frequency equation for

the firgt get, in thig cage ¢
. be obtaineq ag:

(e2.52) :
2-2 oomh @y cog # +--—1-1— 8inh oy sin ﬂs = (8.89)
8 .
« 1 1l

The frequency equation for the second set ig given by'

(92+52) .
2-2 cog a3 cos By + 6T-3- 8in oy sin f, = o (8.90)
: 2 %

The modal functions for the first set can be obtaineq ag:

g = D(cosh ayz *’ie 1840h @5%+(1/8, Joog ﬁszvze sin B,7) (8.91)
»

7
? = H(oogh 0.7 - Zs

; sith @, + 6 cog BeZ + (1/vz:)sin B,2) (8

-

.92)
where .

cogh Tz— cog P,

3 (8.93)
5lsinh %z~ 6 8in 83




B

- v E
% = H(cog azZ & (/*sfﬁz)sin a;
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The modal functiong for the second set are given by:

1 il * l
¥ = D(cos e,z - 85/ g8n a;z+(1/92)eoe Bst+/yain fyz) (8.94)

*.
Z+ 8,008 BsZ+(1//,) sin B5Z)(8.95)

where
' 5 ¥ o
w cos o, — cog B
3 3
Tl P P _ (8.96)
. 8 52 sin ag+ 8,81n By

8.7. AEPRQE%TE SOLUTIONS BY GALERKIN'S TECHNTIQUR:

Except for the gimply supported beam, the frequency equa-

tions for other boundary conditions derived in the section (8. 6)
can be obgerved to be highly transcendental and are golved on a
digital computer only by lengthy trial-and-error method. An at-
tempt hag been made in this section to derive approximate expres-
siong for the torsional frequencies and buckling loads of fixed-
fixed beam and of a beam fixed at one end and simply supported al
the other, utilizing e Galerkin's technique.

F

8.7.1. FIxED-FIXED BEAM:

To satisfy the boundary conditions in this cage, the nor-
mael function of angle of twist ﬁ can be assumed in the form

J +25icy B, (1~ cos 2 nnz) (8.97)
n=1 |

Substituting Eq.(8.97) in the aifferential Equation
(8.20) and using twe Galerkin's technique, expression for the




240

S ' frequency parameter >\2, in this can be obtained as:
3 Nhata®- )\9{ 3+ann2{ o2+ a®+ 2a2(x2-A%) |+ 12 Bzdzxz}

+ {16 ntnt [ 6% (2% a2)+ 1]+ 2 (2 AR)+ 47 2(3+4n21t292)}
(8.98)

Rq.(8.98) givem two real pomitive roots given by

| 2 e A e iy - -
A o = -3—%—{1-5 3+4n?n? [92+d2+52d2(1{2- a,z)J+ 128232y 2]
:

. - 2
* (-1)m[~£ 3+n®n® (52432 +s%a2 (K2 n2) [+ 123%2\)2}

& 135262{161141:4[52(1(2- 22)+ 1]+ an®r® (kB a%)

11/2 : -
4 _7}2(5-*41121:232)5“ 1 (8.99

For a beam not vibrating, ie., A= 0, the expression
the buckling load can be obtained from Eq.(8.98) as

2
Ar=K2+

o (8.1

axt+ ¥2(5141262)
| 7P (1+ an®s®)

If the effeot of ghear deformation is neglected, ie.,
8%= 0, Eq.(8.100) reduces to:

; 2R 4 7%+ K2+ (3/72)Y 2 ' (8.1

cr

which i3 same as Bq.(2.74) obtained by utilizing Timoghenko to

sion theory.
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. | ‘ If the effects of longitudinal inertis and shear de-

formation are neglected, ie., so= d°= 0, Bq.(8.98) yields:
- /e =
A= g [(ngng/s)(q. n®1+ K2~ A2)+y 2_, (8.102)
which is mame as Eq.(2.73).

8.7.2. BEAM FIXED AT ONE END AND SIMPLY SUPPORTED AT THE OTHER:

it it il

To satisfy the boundary conditions in this case, the nor-

mal function of angle of twist @ can be taken as:

g o= =

Dn(cos %; % — cog =B% z) (8.103)
n=1

2

Subgtituting Eq.(8.103) in the differential Equation
(8.20) and using the Galerkin's technique, the expresesion for

1
the Brequency parameter A2, in this case can be obtained as: i
16 2 %g23%- )% {1s+20 nr? [ 52+d2+326.2(1{2-z§2)]+ 64 52"y 2} |
: |

|

+-{41 n4'1!4[82(K2—A2)+ 1 |+ 20 222 (&2~ AR)+ 16 ¥ 2(a+5 nzﬂzsg)}"i
(8.104)
From Eq.(8.104) we have

2 ]
= 1 POl B B 2.0 0 .5 2252
A Y Sgda{bawm [s2+a% a2 (k2- 22) ] 164 %62

+ (-1)m[:{16+20n2ﬂ2[52+d2h2d2(KB-AE)J +64 sgagw}a} -

64 azaziun‘*n"‘[sz(xz-bgh 1 ]+ 20 n®22(x2-A %) |
. 1/2 ?
+16V2%(a+ 8 nzﬂzsa)}' (8.105)
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For a beam not vibrating, ie., )\ = 0, and the expres-
sion for the buckling load can be obtained from Eq.(8.104) as:

15 o8 | 4 ® 2 2 i
ANy = &+ | 200 TS 0.8 (445 n7g7) (8.108) * .
o n°(148.08 n¥g°) i

If the effeot of shear deformation is naeglected, ie.,

8%= 0, Bq.(8.106) reduces to:

L A:r = 9,06 2+ KB+ (3.8/:2)y 2 (.107)

which is same as Fq.(2.77) derived by utilizing Timoshenko toz-
glon theory.

If the effeots of longitudinal inertia and shoar defors

mation are negleoted, ie., s°= d%= 0, Eq.(8.104) yields:

A = [ 1.25 n®7®(2.05 n®r?+ K2-n2) 43’2]1/2 (8.108)

which 1s same ag Zq.(2.76).

8.8. LIMITING CONDITIONS:

The limiting conditions at which the combined influence

of the axial compressive load and elastic foundation on the tor-

sional frequency becomes zero, for gome cages are as follows:

(1) Sygp_lx,-—Sgp}gogjgg Baam:
From Bq.(8.44) wo get two limiting oondltlony in this

o

onpo. They aret
(a) say = 0.5 nmA (8.109)
, Sl (b) ¥ =0.5 nma : (8.110) .
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(2) Fixed-Fixed Beam: From Bq.(8.98) the limiting conditions

in thes case are:

(a) Y3 sdv = nma : (8.111)
; e 1fE
2 2 2
(b) V= nma [l—”-‘%—%] (8.112)
r 3+ n"ng

(3) Beam fixed at one end and Simply supported at the other:
From Eq.(8.104) the Yimiting conditions in this case are:
(a) 4 sav = V5 nna (8.113)

2.2 2]"%
(b) V¥ = 0.559 nna [1*'2'05 S ]

(8.114)
141,25 n°n2g?

Ixéthe effect of shear deformation is neglected, ie.,

%= 0, Bqs.(8.112) and (8.114) reduces to Eqs.(2.79) and (2.80)

derived previously.

For the above relations in various cages between V and A
.there will be no influence of axial load and elagtic founda-

tion on the torsional frequency of vibration. This can be
, Obmerved to be due to the opposite nature of their individual
. effects and these individual effects get mullified at these
1iﬁiting conditions for various cases.
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/8.9, RESULTS AND CONCLUSIONS:

In this section, the results obtained on IBM 1130 Computer
are pregented in Tables 8.1 to 8.16 tq,zhow the effeqts of vari-
Ous non-dimensional parameters on the buckling loads and torsional
frequencies of simply supported, clamped-clamped and clamped-
simply supported beams resting on elastic foundation. Extensive
design datafgg made available in these tables. The main inte-
Test is to find the influences of mhear deformation and longitu=
ainal inertle on the frequenoles of vibration of a short-thin-
walled beam resting on gontinuous elastioc foundation and subjeo-

ted to an axial oompressive losad.

' The values of the torsional buckling load &, for the three
boundary conditions are given in Table 8.1 for various values of
the warping parameter K and ghear parameter g. It is well known
that the effect of increase in the value of K ig to increase the
buckling load considerably. From Table 8.1, we obgserve that for
any congtant value of K, the effect of inerease in the wvalue o:
8 is to decrease the torsional buckling load, and that this re=
duction becomes significant for values of K £1. Also, the ef-
fect of ghear deformation in reducing the buckling load is com-
paritively considerable in clamped-clamped beams than in other

casges.

)

The results ahowihg the combined effects of axial compres-
sive load, longitudinal inertia and shear deformation on the first
four torsional frequencies (first set) are given in Tables 8.2,
8.6 and 8;10, for values of K = 0.01 and g = 2d. The Dercentage
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reductions in the torgional frequencies due to increase in the
axiel compressive load can be observed from these tables %o be-

slightly higher than those when the effects are neglected.

The combined effect of elastic foundation, longi?udinal
inertia and shear deformation on the first four torsional fre-
quencies (first set) are shown in Tables 8.3, 8.7 and 8.11 for
Values of K = 0.01 and s = 2d4. From these results it can be
noted that the Percentage increase in the torsional frequencies
due to elastic foundation is slightly more than those when the
second order effects are neglected. The resulta presented in
Tables 8.4, 8.5, 8.8, 8.9, 8.12 and 8.13 ghow the combined ef-
fecta of axial compressive load and elastic foundation in combi-
nation with the effects of longitudinal inertia and ghear defor-
mation on the firgt and second, third and fourth torgional fre-
quencies (first set) of simply supported, olamped-clamped and
clamped-gimply supported beams resgpectively. It can be obger-
ved from these tables that the combined effects are almost the
algebroic sum of the individual influences of various effeots
on the torsional frequencies of vibration. The results for the
modifying quotients for the first four modes of vibration for :
simply-supported, clamped-clamped, and clamped-gimply gsupported
beans are respectively presented in Tables 8.14, B8.15 and 8.18
for values of § = 0.10, 4 = 0.05 and for various valuss of A ,
Y and K. From these results we Observe that for any set of
values of K and ) , the influence of increase in the values of

A in the range 0.0 to 3.0 is to decrease the modifying quotients
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(1.e., to inorease the second order effeats on the frequencies

of vibration) for various ﬁodeé by about 25 percent. For any

congtant get of values of A and K, the effect of inorease, in
the values of ¥ in the range O to 12 is to inorease the modify-
ing quotients (i.e., to decrease the sescond order effeots on

the frequencies of vibration) for various modes at the mogt by
15 percent. For congtant values of A and ¥ , the effect of in-
creaging the value of K from 1.0 to 10.0 is to increase the
modifying quotients for various modes by about 10 percent.

It is also observed that, for constant values of K and Y ,
the reduction in the frequeﬁcy of vibration at the first mode
is quite considerable for waluea of A nearing Zser' From the
various results presented in this section, we can conclude that

the effects of shear deformation and longitudinal inertia on

the torsional frequencies at higher modes become increagingly

important for a beam with smaller values of warping parameter K

and foundation parameter Y and for larger values of A\ LA

i
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OUAPIRR — IX

FINITE ELOMENT ANATYSTS OF TORSIONAL VIBRATIONS AND STABILITY

OF SHORT THIN-WALLED BEAMS RESTING ON CONTINUOUS ELASTIC FOUN-
I,
DATION,

9.1. INTRODUCTION:

e Rt

The problem of torsional vibrationg and stability of
lengthy thin-walled beams of open section resting on Winkler-

type elastic foundation is golved in‘Ohapter IIT utilizing finite-

element method. The gtiffness, stability and masg matrices

as longitudinal inertias and shear deformation. These second or-

der effects cannot be neglected in the case of ghort and deep
thin-walled beamg and, as isg shown in Chapter IV, they drasgti-

cally change the torsional frequencies at higher modes of vib—
ration.

The pregent chapter, therefore, aimg at extending the
finite element method presented in Chapter III +to include the
effocts of longitudinal inertis and shear deformation. New

stiffness, stability coefficient and mass matrices for a ghort
or deep thin-walled beam are developed in thig Chapter, which
include the effects of longitudinal inertia and shear deforma-

tion in addition to the effects of axial time-invaeriant compreg=-

g8ive load and elagtic foundation. The method developed herein

does not include the second order effects guch

* A paper by the author based on the results from this Chapter

is communicated to Journal of Applied Mechanics, Transactions
of ASME, for publication. 2 Ehflfggj
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1s useful in analyzing both uniform and non-uniform beams with
eny complex boun&ary conditiona. The new stiffness and stabi-
1ity noefficient matrices are made use of in conjunction with
the consigtant mags matrix for finding the torsional frequen-
ciles, buckling loads and mode shapes of short uniform thin-walled
beams with various end conditions. Results obtained for the case
of a Simply supported Eeam by the finite element method are com-
Pared with the exact ones obtained iﬁ Chapter VIII and an excel-

lent agreement ig observed even for a coarse sub-division of the

beam.

9.2. MODIFIED STRAIN ENERGY EXPRESSION INCLUDING THE EFFECTS OF
AXIAL LOAD AND ELASTIC FOUNDAT ION: L

Substituting Eq.(5.1) into Eq.(8.1), the strain energy -

Uy, due to the Winkler-type elagtic foundation can be written in

a modified form ag:

b o 2 e
a5 3 IR E+d) az - Silg)

O —H

Utilizing Egqs.(5.14) and (9.1), the total strain energy

U at any instant 4 including the effect of Winkler-type elagtic

foundation can be written in a modified form ag:!

U = U1+ U2+ e+ U

3 4
-3 ] [Gos(f—ii ; giﬂﬂ Ecwfjﬁtf
: K'Afe-g‘?(»:i:mﬁ K, (d,+ ﬁs)g] iz (9.2
e e T
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Substituting Bq.(5.1) into Eq.(8.3) the potential energy,

W, due to the time-invariant axial compressive load P can be wri-

tten in a modified form ag:

LPI og o o :
W= i R (—tsls) g, (9.3)
o 9§‘~ 0z 0z

Tpe total kinetic energy, Ty 2t eny time t in the modified form
is given by: )

| g i F, oF o o2, 2
=1 A % .
=%/ E’Ip(at S Pcw(azat) ] dz (9.4)

which is same as Eq.(5.15).

9.3. MODIFIED NATURAT, BOUNDARY CONDITIONS :

Except for the case of a free end, the boundary condi-
tiong for gimply supported and fixed ends remain the same ag

those given by Eqs.(5.16) and (5.17).

For the case of a ''free end'', the modified natural

boundary conditions for the pregent problem become :

%y S T d P b R
"a-;—e-tﬂO; (GGB--ZB)?;E+(GCB--TLR+KA£G§)_E=O (9.5)

9.4, DERIVATION OF ELEMENT MATRICES INCLUDING AXIAL LOAD, ELASTIC
FOUNDATION AND SECOND ORDER EFFECTS:

The expressions for the gtrain energy U, potential energy
W and, Kinetic energy Tk)given by Bgs.(9.2)," (9.3) and (9.4) res-

bectively, for an element of length, 1, can be written as follows

.
-




o 2 2
+ K'Aff} %“(ﬁ;) + Ic,c(;dt+ ,ajﬂ) J dz (0.8)
1P iy e Lo
W -% {—é(afg ;JB) dz - (9.7) "
and
1 1 s e . 1
o= { (’Ip(efg ) +ec (d,) dz (9.8)

N

Direct gubgtitution of Eqs.(5.24) to (5.36) into Eqﬂ.(gaﬁ),
(9.7) and (9.8) and the resulting expressions into Hamilton's pri-
neiple, Eq.(3.34), yields (for the Nth element):

e ‘ 1L .n =T
2 =T Tw T - s
[3 54 E’IPE’ Fonshol B dz+ [ Roy A KRy az
1

foy Lop o
Yot IRy KK Ry as /0

Gt T <D 7. Sk '
= i‘ ﬁtN EC, Ayi,+ GC_A A + K L A:I RW dz
1 i 2 = g
i % F Rgm (ac_+ K'Afe n2/g) All.q1+ K_tKTK] P
(o] J-.. 7

il A ;! G—G - l T T'- 1 m T s il
‘ 7 [{ R Iy Ry az + I Rn 4y &y Ryy d‘“J
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_ i
+ 0o oo
e 1?[12 Riw 4 Ry az + £ Ron A4 By dz‘]

PI
5

0 M

B ol 1 lT ;m o
Bow & &) Ry az + £ En & & Rygaz

i
S R P At
IRy LK Ryaz+ g Raw & & Ry dz:} :
= 0 . (9-9)'
Eq.(9.9) can be written more conclsely as follows:

2
1

15IN-5

L e

o LR : 3y =T -
% [(PIPL) dx mN ay - (EUW/L ) q.N EN qN

S R s
+ (P =0 9.10
( IP/AIJ) qN 8y %l at ( )
In Eq.(9.10) the terms ( PTL) my , (ECW/LS)Eﬁ and (PI/AL)sy
denote respectively the mags matrix My the stiffness matrix
Ky and etability coefficient matrix sy Of the Nth element. The

ak
matrices My and EN obtained herein are the same,Eqs.(5.41) and

A
(5.43) respectively. The matrices k, ana 8y are as followg:
- T -
K1 o}
Xy o= (9.11)
I Ry Koo
where
1282
Sym.
s 5 6N 4 i
Eho ~128° 6N 1082
6N 2 ~-6N 4




[ 36N7 ' 5 = ,
‘ : Sym.
, XP N 4
30N°  |_3eN®  _aN 36N2
A e -3N 4 |
15612 =
Sym.
Lo 2 | sen 4 o biad
9.12
42on” | 5aN® 18N 1pen? :
138 3 -22N 4]
[ 368° i
; Sym.
8 3N 4
[ ]
Bl " 0N [-3eN®  _ay 3612
| aN -1 -3N n
156N° 0 ;
. Sym. :
i
49 29N 4 :
+ b2 : (9 .13 )
420N 5402 13N 1p6N2
-13N ") -22N 4]
[ 36n° 5
Sym.
(s%k®41 ) AN 4

30 28  |_zeN® oW 3687

| 3N -1 -3N 4| :

16682 Rt =
4Y? 22N 4 St -
220> BAN® 13N - 15682 e

=188 =3 -22N 4|
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and
= =T
8 8
- —11 21
|®21 S22
- where
it ’ ~ " B6N°
Sym.
g o bt 3N ,&
B = B = a = s
14 21 22 3612 _5N
A

ol e 1

[EN;AEEﬂ [ Gl =

ALy []
‘Eqs. (3.47) and (3.48).

where the nonndimensional parameters A~ and @}? are giVen by

[E-

totally assembled beam can be obtained as:

In a gimilar way the equations of equilibrium for the
. 2.- ; e S
o6 81[8] = (8] [Q]

whdre k, 8, m and Q denote the totally assembled matrices corresg=
ougly.

(9.18)
ponding to the element matrices EN’ EN’ my and Qy defined previ=-

—_—

Following the procedure outlined in Chapters III and V,
the equations of motion for the discretized system can now be ob-
tained from Eq.(9.10) as follows:

(9.17)

!
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9.5. RESULTS AND CONGLUSIONS:

- Regults for the first and second gets of values of A 2 for
plued

various, ‘of the axial load parameter 4 ang foundation parameterﬁ
for simply supportea beamg for values of X = 1, 541, g8 = 0,046
and 4 = 0.023, are obtained on IBM 1130 Computer at Andhra Uni-
versity, Waltair and are presented in Tables 9.1 and 9.2.

In the case of the firgt get of frequencies, the values of

A obtained for the first four modes of vibration, for various
values of ¥ andd , for a division of the beam into N = 2 and 3
segments are shown in Table 9.1 ang are compared with the exact
regults obtained using the analygis Presented in Chapter VIII,
For, the second get, the valueg of >\obtained for the first four
modes of vibration for N = 2 and 3 are shown in Table 9.2 ang
‘are compared with exact results. The exact results for the

first and second sets were obtaineg using Eq.(8.45).

From Tables 9.1 and 9.2, it can be obgerved that, for all
cases, the results obtained by finite element method even for

Very coarse gubdivigions of the beam, are in exnellsﬁt agreement

with the exact ones. As stiffness and mags matrices including
shear deformation and longitudinal inertia in addition to axial
load and elastic foundation, involve double the number of deg-
reeg of freedom than thoge that exist if the gecondary effects aw
nagled&dtwice &8 many natural frequencies result. In tables

9.1 and 9.2 the lower and higher gpectrum of frequencies of simply
supported beam are respectively listed. The second set of freque

cles can also be observed to be in excellent agreement with the
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exact ones. In Chapters IV and VIII these second set of fre-

quencies are discussed in detail.

AB#EQ mentioned previously, results for other boundary con-'
ditions can be eagily obtained using the above stiffness and
mags matrices with guitable changons in the Computer program and
the data. The advantage of using the finite element method ig
that a beam with non-uniform section can algo be analyzed by
deviding the beam into a number of gegments and agguming each
‘sggment has a constant cross section. This method provides us
with an upper bound to the exact frequencies of the system and
is quite general, satisfactorily encompassing all boundary cone
ditions.
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CHAPTER ~ X

NON-LINEAR TORSIONAL STABILITY OF LENGTHY THIN-WALLED BEAMS

-
OF OPEN SECTION RESTING ON CONTINUOUS ELASTIC FOUNDATION,

- 10.1. INTRODUCTION:

It is not uncommon, in gtructural degign, to regard the
elastic buckling load of a slender structural member ag its failure
load, and to pay little attention to its post-buckling behaviogr.
ﬁowever, gome structural members, such as simply supported thin
© Plates loaded in compres ion, can support loads significantly grea-
ter than their elastic critical loads without deflecting exoessively.
This regerve of strength after buckling 1s due mainly to a redis-
tribution of gtregs from the more flexible central area of the
Plate to the unloaded-edge regions ( /3.). on the other hand, the
load carryiﬁg capacity of some thin shell structures reduces rapidly
after buckling. ' Such a gtricture is ex cbrenely sensitive to impem—
fections and disturbances, and may deform excessively at loadg
much less than its elastic critical load (A5 Clearly, the
Post buckling behaviour of a gbruetural member may have a declsive
influence on the relation between its buckling and ultimate gtren-

gths.

The classical linear buckling theories ( 9 %) for elag-

tic beams and columns Necessarily predict buckling at loads that
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remain congtant as thé buckling amplitudes increase. Euler ( 9‘?)
Tirst investigated the elastic flewxural post-buckling behaviour of
coluans in 1744, by using the exact: expresgion for curvature in-
stead of the familiar small deflection epproximation. This resul-
ted in a Post-buckling curve that rises so slowly that there ig no
significant increase in the load-carrying capacity until the defor-

mations become gross.

The non-linear behaviour of members in uniform torsion was
first investigated by Young (/02 ) who considered circular cross
gectiong. A related problem, the torsional stiffness of narrow
rectangular sections under uniform axial tengion, was examined by
Buckley (/4 ) and Weber (/o02) investigated the non-linear beha-
viour of narrow rectangular strips in pure torsion. Iater, Culli-
more (&) ) studied the behaviour of thin-walled I and 3 sections.
Weber and Cullimore showed that the torgional gtiffnegs increages
with the twist, and that this is due to a system of gtresses act-
ing along the helical fibres of the twisted member. The streas
system is gelf equilibrating so that the outer fibres are in ten-~

sion and the fibres olosor to the twint axls are in compression.

Al though Cullimore correctly derived the regult for nar-
row rectangular members his expression for the non-linear torque
component for I and Z gections ig in doubt, because he uvsed a :
constant lever arm, to obtain the torque contributed by the flange,
instead of a variable lever arm, which is the distance from the

twist axis to any point on the flange. Furthermore, his'assump—

tion of wvery thin walls leads to some inaccuracies when applied
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%o the I and Z sections in common use. A more accurate theory of
non-linear non-uniform torsion of thin-walled beams of open section
is presented by Tso and Ghobarah ( /OY) uging the principle of mini-
mum potential energy. Their theory takes into account the effect
of large torsional deformation and allows very general loading and

boundary conditions.

It can be seen that there isg a surprising paucity of work
on the elastio torglonal pogt~buckling bashaviour of doubly pymme-
trio boams, in comparigon with the extenalve work on other gtruc—
tures ( #5). In particular, the behaviour of simply-supported and
clamped beams and of I-gection members resting on ¢ontinuous elag-
tic foundation has not been investigated. The purpose of the Pre-
sent Chapter, then, is to study theoretically the elastical tor-
sional post—buckling 5ehaviour of statically determinate beams of

I-gection resting on continuous Winkler type elastic foundation.

10.2. DEVELOPMENT OF GOVERNWING DIFFERTNTTAL EQUATION AND BOUNDARY
CONDITIONS:

Congider a thin-walled beam of doubly-gymmetric open crosg
gection gsubject to axial compressive load. The relationghip bet-
ween the total torque T, and the corresponding angle of twist g in
bure elastic torsion of a uniform thin-walled beam' ig givén by

Saint-Venant ag:

ity 108
=gt 7 - (10.1)

In the case of non-uniforn torsién, Eq.(10.1) is extended to allow

for the warping of the cross-sections of the beam; and




|
|
| e
p, =go & . g &9 (10.2) |

The above Eg.(10.2) gives reasonable results for angles of twist

‘apprdximatgly no greater than 57,

Experimental results obtained by Goodier ( 38 ) from tests
have ghown good qualitative, but poor quantitative, agreement with
Vthe theoretical conclusgions from Eq,(io.z). If one examines the
work of Weber (/o%), Gregory ( 42 ), Terrington (37) and Tso
~and Ghobarah (/o&), it can be seen that Eq.(10.2) is not complete . |

ingofar as there is a further torque component term to be congi- )

dered. This term is due to the 'shortening effect' ariging from |
torgion, described by Weber (/02) and allowed for by Gregory (42) 5
and, Tgo and Ghobarah (/o%). Allowing for this component of tor-
que, Eq.(lO.Q), becomeg ‘

. ¥ 3 3z 1
& 80 oo 88 . anpcif --
Ty = GO, 3= - EC, 5 + 2BF(dz) (10.3)

where F is a constant dependent on cross gectional properties and

is defined by

2 e
‘ F= Ly (I,/8) (10.})
in which IPO ig half the polar moment of inertia about the shear

center and Iﬁ_the fourth moment of inertia about the shear center.

In the case of a thin-walled doubly symmetric I-beam of !

flange and web thicknesses tf and tW respectively; height between é}
the centerlines of the glanges h, flange width bﬁ,and flange and

v i

web thiclnesses being assumed as small compared with height h, i.e. |




~ be evaluated as follows (/os):

L and

., The boundary conditions associate with this problem are as follows:

dzg
(b) Clamped end:
3 % V
g =0 and %g =0 (10.10)
(e) Free ena:
. gEﬂ:O g
% dzg
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tp <<'h, end t_ << h, the geometric properties in Eq.(10.4) can

5 y

: 5 2
h%% t,  bPt. bPhtt
s P b P B
I~ 329‘+ 55— * 155 * Lap (10.5)

I = (1/24) (hstw+ 2bftf+ 6%h2tf) (10.6?

‘ b :
For a beam restingﬁcontinuous Winkler type elastic foundation and

subjected to an axial compressive load P, we have
: .

2
ar PT...g
Gy Ehs0'0
Tow m T oRatilo g

R

(10.7)

Substituting Bq.(10.3) in Eq.(10.7) the governing non-linear qif-

ferential equation can be obtained ag

e

[ 4

4 g .2 PL 2
Cpe 40 | appeddy* 4% _py &%¢
EC_ - 6EF(32) g fee — =% + K, o

4 A d22

=0 (10.8)
dz

(a) Simply gupported end:

i 2
Cent gD

(10.9) - ;fir
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¥

E ) Sl : 1 dB : gg 3 PI gﬂ = ‘ " ;
2 EC,, ——-des = EEF(dz) = (GGE—- —»—EA ) g=..20 - (10.11)

The general golution of Eq.(10.8) can be obtained by nu-

merical methods using computer techniques. However, for the pur-

pose of this thesis, approximate golutiong are obtained for Simply

supported and clamped beams using Galerkin's method

10.3. SIMPLY SUPPORTED BEAM:
]

4 i For a beam simply supported at both ends, the bogndary

+ conditions are:

\

e
Oand f =0 gt 2

¢

I
o

(10.18)
and;. R s
Lo [
where primes denote differentiation with regpect to the dimension-

——  less length % = z/L. e ;

1

Oeand @ =0 at Z

I
]

i (10.13)

Eq.(10.8) can be written in non-dimensionsl form as:

G A aeeed oo ™ |
PR BT e S toiay
e Fnl wheré ‘

o B/C_ ‘ (10.15),

To solve Eq.(10.14) by Galerkin's method, the angle of
twist #(Z) is assumed to be of the form

; : #(z) = £ 2Uz) (10.16)

: ® . =
5 where P is the torsional amplitude and L is a function of Z. Since
i will be an approximate function assumed +to satigfy the boundary
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conditionS, by substituting Eq.(10.16) in Eq.(10.14)
S will be obtained ag:

» an error

W M

€np l_z: 5 eﬁ‘.ﬁcx'fx;“- (P a2y '+ 4y 21:1 (10.17)

: % .
For minimizing the error €, the Galerkin's Integral (79) is

(10.18)

7o satisfy the boundary conditionsg, Egs. (10 12) and (10.13),
We assume

92 (2) =Sin n 3 (10.19)

Substituting Eqs.(10.17) and (10.19) into Eq.(10.18), we
obtain the expression for the torgional pogt- -buckling 1oad for a

simply supported beam as:

wgl 2 o %
SR e # (10.20)
The corregponding linear torSionaibuokling load is given by (See
<Eq.2.58)
; 2 2
A=K 4?4 g92)2 (10.21)
Hence,

the ratio of the non-linear buckling load to linear
buokllng load is given by

P* - erz
— ; —SL - 4 g (3/2)“4 % Be : (10.22)
T B (e )z 477]
O or

- In the abgence of elastic foundation, i.e., vy

= 0, Eq.(10.22)




& e reduces to
e
k) 2
X - Tl —~ - .
»’1‘\ P A . 2 3 2 !
: To= 2= 1% ant o ;g . : (10.23)
; £ A 2 (X“+n~) __
| : er :

|

|

10.4. CLAMPED BEAN: #
!

The boundary conditions for a beam clamped at both the

ends are:

|

P=0tieng - g e ey o - Srfetody ’

; 5& o, and y
e o =0 ama g s ey : (10.25)

To satisfg the above conditions, the functioﬁ 2L (2Z) can be

assumed ag:

; : ' A (2) = ‘B*fl—lCo-s 2m7) (10.26). =

£ Substituting Egs.(10.17) and (10.26) into Bq.(10.18) we
obtain the expression for the torsional pogt-buckling load for a

clamped beam asf

N

#2

A gp =K +an® +57%m2 s 2% 2 (10.27)

The Gorresponding linear torglonal buckling load for a

clamped beam gs (See Eq.2.74)

u Lo 2 .
AL =K+ an® 45y 2R (10.28)

Hence, the ratio of the non-linear buckling load to linear

buckling load ig given by
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W A*\B 4 » *2 w0
.1';..._.%2: =9 Esgag oy (10.29)
Por A or [“ (K=+4n%)+ 3V°] '

In the absence of elastic foundation, ie., Y = 0, Eq.(10.29)

reduces to
2
£ 2 B
» o ¥
P ™ A L] I ..6.125.._5:@...2__ (10 .'30)
3 2 K°+ 4n
or B ok




